Artykuły w czasopismach na temat „Stem cells”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Stem cells.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Stem cells”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

CR, Thambidorai. "Stem Cells in Urethral Replacement". Journal of Embryology & Stem Cell Research 4, nr 1 (2020): 1–2. http://dx.doi.org/10.23880/jes-16000139.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Aguilar-Gallardo, Cristóbal, i Carlos Simón. "Cells, Stem Cells, and Cancer Stem Cells". Seminars in Reproductive Medicine 31, nr 01 (17.01.2013): 005–13. http://dx.doi.org/10.1055/s-0032-1331792.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Srivastava, A. N., Neema Tiwari, Shailendra Yadav i Suryakant . "LUNG CANCER STEM CELLS-AN UPDATE". Era's journal of medical research 4, nr 1 (1.06.2017): 22–31. http://dx.doi.org/10.24041/ejmr2017.4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Yang, Junzheng. "Stem Cells Applications in Neurodegenerative Diseases". Epidemiology International Journal 7, nr 4 (2023): 1–6. http://dx.doi.org/10.23880/eij-16000267.

Pełny tekst źródła
Streszczenie:
Neurodegenerative diseases are a kind of diseases caused by progressive loss of neuronal structure and function and glial cell homeostasis imbalance, there are many kinds of neurodegenerative diseases include Alzheimer's disease (AD), Parkinson's disease (PD); Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). So far, due to the lack of ideal treatment methods, it seriously threats to human health especially the elder population. Recently, with the rapid development of regenerative medicine, stem cells rely on their advantages including self-renewing capability, low immunogenicity, migration and homing capabilities, and stem cell derivatives including stem cells derived extracellular vesicles and stem cell-derived organoids, it provides unlimited application possibilities for the treatment of neurodegenerative diseases. In this review, we will summarize the recent research progress on the preclinical and clinical applications of stem cells in neurodegenerative diseases, hope that the reviews may provide some useful clues for researchers.
Style APA, Harvard, Vancouver, ISO itp.
5

Weigel, Detlef, i Gerd Jürgens. "Stem cells that make stems". Nature 415, nr 6873 (luty 2002): 751–54. http://dx.doi.org/10.1038/415751a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

J, Otsuka. "A Theoretical Study on the Cell Differentiation Forming Stem Cells in Higher Animals". Physical Science & Biophysics Journal 5, nr 2 (2021): 1–10. http://dx.doi.org/10.23880/psbj-16000191.

Pełny tekst źródła
Streszczenie:
The recent genome sequencing of multicellular diploid eukaryotes reveals an enlarged repertoire of protein genes for signal transmission but it is still difficult to elucidate the network of signal transmission to drive the life cycle of such an eukaryote only from biochemical and genetic studies. In the present paper, a theoretical study is carried out for the cell differentiation, the formation of stem cells and the growth from a child to the adult in the higher animal. With the intercellular and intracellular signal transmission in mind, the cell differentiation is theoretically derived from the process by the transition of proliferated cells from proliferation mode to differentiation mode and by both the long-range interaction between distinctive types of cells and the short-range interaction between the same types of cells. As the hierarchy of cell differentiation is advanced, the original types of self-reproducible cells are replaced by the self-reproducible cells returned from the cells differentiated already. The latter type of self-reproducible cells are marked with the signal specific to the preceding differentiation and become the stem cells for the next stage of cell differentiation. This situation is realized under the condition that the differentiation of cells occurs immediately after their proliferation in the development. The presence of stem cells in the respective lineages of differentiated cells strongly suggests another signal transmission for the growth of a child to a definite size of adult that the proliferation of stem cells in one lineage is activated by the signal from the differentiated cells in the other lineage(s) and is suppressed by the signal from the differentiated cells in its own lineage. This style of signal transmission also explains the metamorphosis and maturation of germ cells in higher animals.
Style APA, Harvard, Vancouver, ISO itp.
7

Challa, Stalin Reddy, i Swathi Goli. "Differentiation of Human Embryonic Stem Cells into Engrafting Myogenic Precursor Cells". Stem cell Research and Therapeutics International 1, nr 1 (16.04.2019): 01–05. http://dx.doi.org/10.31579/2643-1912/002.

Pełny tekst źródła
Streszczenie:
Degenerative muscle diseases affect muscle tissue integrity and function. Human embryonic stem cells (hESC) are an attractive source of cells to use in regenerative therapies due to their unlimited capacity to divide and ability to specialize into a wide variety of cell types. A practical way to derive therapeutic myogenic stem cells from hESC is lacking. In this study, we demonstrate the development of two serum-free conditions to direct the differentiation of hESC towards a myogenic precursor state. Using TGFß and PI3Kinase inhibitors in combination with bFGF we showed that one week of differentiation is sufficient for hESC to specialize into PAX3+/PAX7+ myogenic precursor cells. These cells also possess the capacity to further differentiate in vitro into more specialized myogenic cells that express MYOD, Myogenin, Desmin and MYHC, and showed engraftment in vivo upon transplantation in immunodeficient mice. Ex vivo myomechanical studies of dystrophic mouse hindlimb muscle showed functional improvement one month post-transplantation. In summary, this study describes a promising system to derive engrafting muscle precursor cells solely using chemical substances in serum-free conditions and without genetic manipulation.
Style APA, Harvard, Vancouver, ISO itp.
8

Nighojkar, Urvashi Rajeev, Dr Priya A. Lele i Mudita Agrawal. "Scope of Stem Cells in Periodontal Regeneration". International Journal of Scientific Research 2, nr 5 (1.06.2012): 428–31. http://dx.doi.org/10.15373/22778179/may2013/145.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

P, Pradeep. "Role of Stem Cells in Cerebral Infarction". Journal of Embryology & Stem Cell Research 2, nr 2 (2018): 1–8. http://dx.doi.org/10.23880/jes-16000112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Karunanithi Arulvizhi M, Arunagiri. "Stem Cells in Periodontal Regenerations - A Review". International Journal of Science and Research (IJSR) 13, nr 2 (5.02.2024): 589–94. http://dx.doi.org/10.21275/sr24206105401.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Garg, Minal. "MicroRNAs, stem cells and cancer stem cells". World Journal of Stem Cells 4, nr 7 (2012): 62. http://dx.doi.org/10.4252/wjsc.v4.i7.62.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Li, Jia J., i Michael M. Shen. "Prostate Stem Cells and Cancer Stem Cells". Cold Spring Harbor Perspectives in Medicine 9, nr 6 (5.10.2018): a030395. http://dx.doi.org/10.1101/cshperspect.a030395.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Reya, Tannishtha, Sean J. Morrison, Michael F. Clarke i Irving L. Weissman. "Stem cells, cancer, and cancer stem cells". Nature 414, nr 6859 (listopad 2001): 105–11. http://dx.doi.org/10.1038/35102167.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Soria, Bernat, Francisco J. Bedoya i Franz Martin. "Gastrointestinal Stem Cells I. Pancreatic stem cells". American Journal of Physiology-Gastrointestinal and Liver Physiology 289, nr 2 (sierpień 2005): G177—G180. http://dx.doi.org/10.1152/ajpgi.00116.2005.

Pełny tekst źródła
Streszczenie:
The transplantation of islets isolated from donor pancreas has renewed the interest in cell therapy for the treatment of diabetes. In addition, the capacity that stem cells have to differentiate into a wide variety of cell types makes their use ideal to generate β-cells for transplantation therapies. Several studies have reported the generation of insulin-secreting cells from embryonic and adult stem cells that normalized blood glucose values when transplanted into diabetic animal models. Finally, although much work remains to be done, there is sufficient evidence to warrant continued efforts on stem cell research to cure diabetes.
Style APA, Harvard, Vancouver, ISO itp.
15

Bjerknes, Matthew, i Hazel Cheng. "Gastrointestinal Stem Cells. II. Intestinal stem cells". American Journal of Physiology-Gastrointestinal and Liver Physiology 289, nr 3 (wrzesień 2005): G381—G387. http://dx.doi.org/10.1152/ajpgi.00160.2005.

Pełny tekst źródła
Streszczenie:
Current views of the identity, distribution, and regulation of small intestinal epithelial stem cells and their immediate progeny are discussed. Recent works implicating Wnt signaling in stem and progenitor proliferation, the involvement of Notch signaling in epithelial lineage specification, and the role of hedgehog and bone morphogenetic protein families in crypt formation are integrated. We had the good fortune that many of these papers came in pairs from independent groups. We attempt to identify points of agreement, reinterpret each in the context of the other, and indicate directions for continued progress.
Style APA, Harvard, Vancouver, ISO itp.
16

Hill, Reginald, i Hong Wu. "PTEN, Stem Cells, and Cancer Stem Cells". Journal of Biological Chemistry 284, nr 18 (30.12.2008): 11755–59. http://dx.doi.org/10.1074/jbc.r800071200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Ahmed Elkammar, Hala. "Effect of human bone marrow derived mesenchymal stem cells on squamous cell carcinoma cell line". International Journal of Academic Research 6, nr 1 (30.01.2014): 110–16. http://dx.doi.org/10.7813/2075-4124.2014/6-1/a.14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

M. Baghdadi, Houry. "Effect of stem cells on genetic mutations and proliferation in squamous cell carcinoma". International Journal of Academic Research 6, nr 1 (30.01.2014): 192–97. http://dx.doi.org/10.7813/2075-4124.2014/6-1/a.25.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

MAS, Bezerra, Ferreira LAM, Kawasaki-Oyama RS, Nascimento MCA, Cuzziol CI, Castanhole-Nunes MMU, Pavarino EC, Maniglia JM i Goloni-Bertollo EM. "Effectiveness of Hypoxia-Induced Accumulation of Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma". Cancer Medicine Journal 3, S1 (30.11.2020): 13–23. http://dx.doi.org/10.46619/cmj.2020.3.s1-1003.

Pełny tekst źródła
Streszczenie:
INTRODUCTION: The small number of cancer stem cells, which correspond to only 0.01% - 0.1% of total tumor cells, has been the biggest obstacle in understanding their biology and role in the origin and maintenance of tumors, their metastatic and recurrence potentials, and resistance to radio-chemotherapy. Therefore, promoting its accumulation will enable further studies and future advances in the diagnosis and treatment of head and neck cancer squamous cell carcinoma. OBJECTIVE: To induce cancer stem cell accumulation in primary cell cultures of head and neck squamous cell carcinoma using a hypoxia chamber. METHODS: Head and neck squamous cell carcinoma samples were cultured and subjected to hypoxia. Oxygen deprivation aimed to induce cancer stem cell accumulation. RESULTS: Immediately after hypoxia, the percentage of O2-deprived cancer stem cells increased 2-fold as compared to control. Surprisingly, new phenotyping performed 45 days after hypoxia showed a 9-fold increase in cancer stem cell percentage in cells that suffered hypoxia. Hypoxic cells showed an increase in spheroid formation when compared to control cells, as well as enhanced abilities in invasion and migration. CONCLUSION: Hypoxia was efficient in cancer stem cell accumulation. As cancer stem cells are a small number of cells within the tumor, promoting their accumulation will enable further studies and future advances in the diagnosis and treatment of head and neck cancer.
Style APA, Harvard, Vancouver, ISO itp.
20

Azab, Azab. "Stem Cells: Insights into Niche, Classification, Identification, Characterization, Mechanisms of Regeneration by Using Stem Cells, and Applications in Joint Disease Remedy". Biotechnology and Bioprocessing 2, nr 1 (1.02.2021): 01–07. http://dx.doi.org/10.31579/2766-2314/024.

Pełny tekst źródła
Streszczenie:
Background: Stem cell therapy has attracted much interest in the 21st century, not only because of the controversy surrounding the ethics involving pluripotent stem cells, but their potential for clinical use. Objectives: The present review highlights the stem cells niche, types, identification, and characterization, mechanisms of regeneration by using stem cells, and applications in joint disease remedy. Stem cells could be well differentiated cells with the potential to display different cell types depending on the host niche. Niche is defined as the cellular microenvironment providing support and stimuli to control the properties of stem cells. It consists of signaling molecules, inter-cell contacts and interaction between stem cells and their extracellular matrix neighbors. Stem cells are classified according to their sources into two main types, the embryonic and non-embryonic. Embryonic stem cells are pluripotent and can differentiate into all germ layers. Non-embryonic stem cells can be sub-classified into fetal stem cells and adult stem cells. Cultured cells can be made to differentiate into exclusive lineages by providing selective media components that can be identified by histochemical staining and quantified by quantitative Real-time polymerase chain reaction. Mesenchymal stem cells (MSCs) can be identified based on the expression of specific proteins called surface antigen phenotype of mesenchymal stem cell markers. MSCs secrete a variety of interleukins, several neurotrophic factors, many cytokines, and growth factors. These secreted bioactive factors have both paracrine and autocrine effects, which are anti-fibrotic and anti-apoptotic, as well as enhance angiogenesis. Furthermore, they stimulate mitosis and differentiation of tissue-intrinsic reparative stem cells. Systemic MSC transplantation can engraft to an injured tissue and promote wound healing through differentiation, and proliferation in synergy with hematopoietic stem cells. MSCs have been shown to express a variety of chemokines and chemokine receptors and can home to sites of inflammation by migrating towards injury or inflammatory chemokines and cytokines. MSCs are proven to have immunomodulatory properties that are among the most intriguing aspects of their biology. The immunosuppressive properties of MSCs inhibit the immune response of naive and memory T cells in a mixed lymphocyte culture and induce mitogen. The systemic infusion of MSCs can be used in immunosuppressive therapy of various disorders. MSCs have become an alternative source of cells that can be drawn from several these cells have been used as treatment to repair cartilage defects at early stages sources. Using the MSCs and directing them into chondrogenic differentiation might lead to the formation of higher quality cartilage, which has a great composition of hyaline, adequate structural reorganization and therefore improved biomechanical properties. Conclusion: It can be concluded that stem cells are classified according to their sources into two main types, the embryonic and non-embryonic. Embryonic stem cells are pluripotent and can differentiate into all germ layers. Non-embryonic stem cells can be sub-classified into fetal stem cells and adult stem cells. MSCs secrete bioactive factors that are anti-fibrotic and anti-apoptotic, as well as enhance angiogenesis. The systemic infusion of MSCs can be used in immunosuppressive therapy of various disorders. These cells have been used as treatment to repair cartilage defects at early stages.
Style APA, Harvard, Vancouver, ISO itp.
21

Lebacqz, Karen, Carol Tauer, Glenn McGee i Arthur Caplan. "Stem Cells". Hastings Center Report 29, nr 4 (lipiec 1999): 4. http://dx.doi.org/10.2307/3528057.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Sargaiyan, Vinod, Rajveer S. Yadav, Saurabh S. Parihar, Makrand Sapat, Sateesh Bhatele i Archana H. Lanje. "Stem Cells". International Journal of Oral Care & Research 5, nr 4 (2017): 332–34. http://dx.doi.org/10.5005/jp-journals-10051-0126.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Rafael, Hernando. "Stem Cells". Journal of Neurosurgery 108, nr 4 (kwiecień 2008): 841–42. http://dx.doi.org/10.3171/jns/2008/108/4/0841.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Thakur, Madhukar. "Stem Cells". Malecular Imaging and Radionuclide Therapy 24, nr 1 (5.02.2015): 37. http://dx.doi.org/10.4274/mirt.24.01.01.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Moraczewski, Albert S. "Stem Cells". Ethics & Medics 28, nr 3 (2003): 1–2. http://dx.doi.org/10.5840/em20032834.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Hodson, Richard. "Stem cells". Nature 597, nr 7878 (29.09.2021): S5. http://dx.doi.org/10.1038/d41586-021-02620-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Lederman, Lynne. "Stem Cells". BioTechniques 42, nr 1 (styczeń 2007): 25–29. http://dx.doi.org/10.2144/000112337.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Huang, B., C. Jiang, L. Qin, Y. Cui, J. Liu, M. Stimpfel, B. Cvjeticanin i in. "Stem cells". Human Reproduction 28, suppl 1 (1.06.2013): i366—i368. http://dx.doi.org/10.1093/humrep/det224.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Bernstein, Daniel. "Stem cells". Current Opinion in Pediatrics 31, nr 5 (październik 2019): 617–22. http://dx.doi.org/10.1097/mop.0000000000000801.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Murdoch, Barbara. "Stem Cells". American Biology Teacher 78, nr 2 (1.02.2016): 174. http://dx.doi.org/10.1525/abt.2016.78.2.174.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Thaller, Seth R., Sharon Elliot i Ernesto J. Arroyo. "Stem Cells". Journal of Craniofacial Surgery 31, nr 1 (2020): 4–5. http://dx.doi.org/10.1097/scs.0000000000005803.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Oktem, Ozgur, i Kutluk Oktay. "Stem Cells". Annals of the New York Academy of Sciences 1127, nr 1 (kwiecień 2008): 20–26. http://dx.doi.org/10.1196/annals.1434.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Kereiakes, Dean J. "Stem Cells". Circulation 107, nr 7 (25.02.2003): 939–40. http://dx.doi.org/10.1161/01.cir.0000057607.03836.f8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Levi, Benjamin, Jason P. Glotzbach, Victor W. Wong, Emily R. Nelson, Jeong Hyun, Derrick C. Wan, Geoffrey C. Gurtner i Michael T. Longaker. "Stem Cells". Journal of Craniofacial Surgery 23, nr 1 (styczeń 2012): 319–23. http://dx.doi.org/10.1097/scs.0b013e318241dbaf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Behr, Björn, Sae Hee Ko, Victor W. Wong, Geoffrey C. Gurtner i Michael T. Longaker. "Stem Cells". Plastic and Reconstructive Surgery 126, nr 4 (październik 2010): 1163–71. http://dx.doi.org/10.1097/prs.0b013e3181ea42bb.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Sinclair, Jan, i Gail Thompson. "Stem Cells". Neurology Now 4, nr 4 (lipiec 2008): 9. http://dx.doi.org/10.1097/01.nnn.0000333834.11483.04.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

WEISSMAN, IRVING, GERALD SPANGRUDE, SHELLY HEIMFELD, LAURIE SMITH i NOBUKO UCHIDA. "Stem cells". Nature 353, nr 6339 (wrzesień 1991): 26. http://dx.doi.org/10.1038/353026a0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

ISCOVE, NORMAN. "Stem cells". Nature 353, nr 6339 (wrzesień 1991): 26. http://dx.doi.org/10.1038/353026b0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Lomberk, Gwen. "Stem Cells". Pancreatology 7, nr 4 (wrzesień 2007): 314–16. http://dx.doi.org/10.1159/000105496.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

BAUM, RUDY M. "Stem Cells". Chemical & Engineering News 85, nr 49 (3.12.2007): 3. http://dx.doi.org/10.1021/cen-v085n049.p003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Cheng, Li-Chun, Masoud Tavazoie i Fiona Doetsch. "Stem Cells". Neuron 46, nr 3 (maj 2005): 363–67. http://dx.doi.org/10.1016/j.neuron.2005.04.027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Hucho, Ferdinand. "Stem cells". Molecular Aspects of Medicine 22, nr 3 (czerwiec 2001): 143–47. http://dx.doi.org/10.1016/s0098-2997(01)00005-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Tuma, Rabiya S. "Stem cells". Oncology Times 4, nr 6 (czerwiec 2007): 15–17. http://dx.doi.org/10.1097/01434893-200706000-00019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Shalaby, Mohamed Adel. "Stem Cells". Al-Azhar Medical Journal 45, nr 1 (styczeń 2016): i—iii. http://dx.doi.org/10.12816/0026258.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

He, H., M. R. Emmett, A. G. Marshall, Y. Ji, C. A. Conrad, W. Priebe, H. Colman i in. "Stem Cells". Neuro-Oncology 12, Supplement 4 (21.10.2010): iv119—iv127. http://dx.doi.org/10.1093/neuonc/noq116.s18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Joshi, K., S. Gupta, S. Mazumder, Y. Okemoto, B. Angenieux, H. Kornblum, I. Nakano i in. "STEM CELLS". Neuro-Oncology 13, suppl 3 (21.10.2011): iii145—iii153. http://dx.doi.org/10.1093/neuonc/nor163.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Cheng, L., Z. Huang, W. Zhou, Q. Wu, J. Rich, S. Bao, P. Baxter i in. "STEM CELLS". Neuro-Oncology 15, suppl 3 (1.11.2013): iii206—iii216. http://dx.doi.org/10.1093/neuonc/not190.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

GUDJONSSON, THORARINN, ALLAN RANDRUP THOMSEN, OLLI VAINIO i HELGA M. ÖGMUNDSDÓTTIR. "Stem cells". APMIS 113, nr 11-12 (listopad 2005): 725–26. http://dx.doi.org/10.1111/j.1600-0463.2005.apm_113-12.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Fuchs, Elaine, i Julia A. Segre. "Stem Cells". Cell 100, nr 1 (styczeń 2000): 143–55. http://dx.doi.org/10.1016/s0092-8674(00)81691-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Weissman, Irving L. "Stem Cells". Cell 100, nr 1 (styczeń 2000): 157–68. http://dx.doi.org/10.1016/s0092-8674(00)81692-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii