Artykuły w czasopismach na temat „Stationary micropolar fluids equations”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Stationary micropolar fluids equations”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Duarte-Leiva, Cristian, Sebastián Lorca i Exequiel Mallea-Zepeda. "A 3D Non-Stationary Micropolar Fluids Equations with Navier Slip Boundary Conditions". Symmetry 13, nr 8 (26.07.2021): 1348. http://dx.doi.org/10.3390/sym13081348.
Pełny tekst źródłaKocić, Miloš, Živojin Stamenković, Jelena Petrović i Jasmina Bogdanović-Jovanović. "MHD micropolar fluid flow in porous media". Advances in Mechanical Engineering 15, nr 6 (czerwiec 2023): 168781322311784. http://dx.doi.org/10.1177/16878132231178436.
Pełny tekst źródłaEldabe, N. T., i M. Y. Abou-Zeid. "The Wall Properties Effect on Peristaltic Transport of Micropolar Non-Newtonian Fluid with Heat and Mass Transfer". Mathematical Problems in Engineering 2010 (2010): 1–40. http://dx.doi.org/10.1155/2010/898062.
Pełny tekst źródłaWENG, HUEI CHU, CHA'O-KUANG CHEN i MIN-HSING CHANG. "Stability of micropolar fluid flow between concentric rotating cylinders". Journal of Fluid Mechanics 631 (17.07.2009): 343–62. http://dx.doi.org/10.1017/s0022112009007150.
Pełny tekst źródłaXing, Xin, i Demin Liu. "Numerical Analysis and Comparison of Three Iterative Methods Based on Finite Element for the 2D/3D Stationary Micropolar Fluid Equations". Entropy 24, nr 5 (29.04.2022): 628. http://dx.doi.org/10.3390/e24050628.
Pełny tekst źródłaSalemovic, Dusko, Aleksandar Dedic i Bosko Jovanovic. "Micropolar fluid between two coaxial cylinders (numerical approach)". Theoretical and Applied Mechanics 48, nr 2 (2021): 159–69. http://dx.doi.org/10.2298/tam210823012s.
Pełny tekst źródłaBurmasheva, N. V., i E. Yu Prosviryakov. "Exact solutions to the NAVIER–STOKES equations for unidirectional flows of micropolar fluids in a mass force field". Diagnostics, Resource and Mechanics of materials and structures, nr 3 (czerwiec 2024): 41–63. http://dx.doi.org/10.17804/2410-9908.2024.3.041-063.
Pełny tekst źródłaArnaud, M. M., G. M. de Araùjo, M. M. Freitas i E. F. L. Lucena. "ON A SYSTEM OF EQUATIONS OF A NON-NEWTONIAN MICROPOLAR FLUID IN THE STATIONARY FORM". Far East Journal of Applied Mathematics 97, nr 4 (2.12.2017): 125–42. http://dx.doi.org/10.17654/am097040125.
Pełny tekst źródłaChen, James, James D. Lee i Chunlei Liang. "Constitutive equations of Micropolar electromagnetic fluids". Journal of Non-Newtonian Fluid Mechanics 166, nr 14-15 (sierpień 2011): 867–74. http://dx.doi.org/10.1016/j.jnnfm.2011.05.004.
Pełny tekst źródłaIDO, Yasushi. "Basic Equations of Micropolar Magnetic Fluids". Transactions of the Japan Society of Mechanical Engineers Series B 70, nr 696 (2004): 2065–70. http://dx.doi.org/10.1299/kikaib.70.2065.
Pełny tekst źródłaYang, Hujun, Xiaoling Han i Caidi Zhao. "Homogenization of Trajectory Statistical Solutions for the 3D Incompressible Micropolar Fluids with Rapidly Oscillating Terms". Mathematics 10, nr 14 (15.07.2022): 2469. http://dx.doi.org/10.3390/math10142469.
Pełny tekst źródłaStamenkovic, Zivojin, Milos Kocic, Jasmina Bogdanovic-Jovanovic i Jelena Petrovic. "Nano and micropolar MHD fluid flow and heat transfer in inclined channel". Thermal Science, nr 00 (2023): 170. http://dx.doi.org/10.2298/tsci230515170k.
Pełny tekst źródłaRahman, M. M., i T. Sultana. "Radiative Heat Transfer Flow of Micropolar Fluid with Variable Heat Flux in a Porous Medium". Nonlinear Analysis: Modelling and Control 13, nr 1 (25.01.2008): 71–87. http://dx.doi.org/10.15388/na.2008.13.1.14590.
Pełny tekst źródłaKocić, Miloš, Živojin Stamenković, Jelena Petrović i Jasmina Bogdanović-Jovanović. "Control of MHD Flow and Heat Transfer of a Micropolar Fluid through Porous Media in a Horizontal Channel". Fluids 8, nr 3 (8.03.2023): 93. http://dx.doi.org/10.3390/fluids8030093.
Pełny tekst źródłaCruz, Felipe W. "Global strong solutions for the incompressible micropolar fluids equations". Archiv der Mathematik 113, nr 2 (6.04.2019): 201–12. http://dx.doi.org/10.1007/s00013-019-01319-4.
Pełny tekst źródłaKim, Jae-Myoung, i Seungchan Ko. "Some Liouville-type theorems for the stationary 3D magneto-micropolar fluids". Acta Mathematica Scientia 44, nr 6 (1.10.2024): 2296–306. http://dx.doi.org/10.1007/s10473-024-0614-0.
Pełny tekst źródłaIDO, Yasushi, i Takahiko TANAHASHI. "Fundamental equations for magnetic fluids by micropolar theory. 2nd report: Constitutive equations." Transactions of the Japan Society of Mechanical Engineers Series B 56, nr 525 (1990): 1392–99. http://dx.doi.org/10.1299/kikaib.56.1392.
Pełny tekst źródłaHassanien, I. A. "Mixed Convection in Micropolar Boundary-Layer Flow Over a Horizontal Semi-Infinite Plate". Journal of Fluids Engineering 118, nr 4 (1.12.1996): 833–38. http://dx.doi.org/10.1115/1.2835517.
Pełny tekst źródłaKhalid, Asma, Ilyas Khan i Sharidan Shafie. "Free convection flow of micropolar fluids over an oscillating vertical plate". Malaysian Journal of Fundamental and Applied Sciences 13, nr 4 (26.12.2017): 654–58. http://dx.doi.org/10.11113/mjfas.v13n4.738.
Pełny tekst źródłaBRESCH, DIDIER, i JÉRÔME LEMOINE. "STATIONARY SOLUTIONS FOR SECOND GRADE FLUIDS EQUATIONS". Mathematical Models and Methods in Applied Sciences 08, nr 05 (sierpień 1998): 737–48. http://dx.doi.org/10.1142/s0218202598000330.
Pełny tekst źródłaK.C., Durga Jang, i Dipendra Regmi. "Global regularity criteria for the 2D Magneto-micropolar Equations with Partial Dissipation". Nepali Mathematical Sciences Report 40, nr 1-2 (31.12.2023): 55–70. http://dx.doi.org/10.3126/nmsr.v40i1-2.61498.
Pełny tekst źródłaVIAGGIU, STEFANO. "GENERATING ANISOTROPIC FLUIDS FROM VACUUM ERNST EQUATIONS". International Journal of Modern Physics D 19, nr 11 (wrzesień 2010): 1783–95. http://dx.doi.org/10.1142/s0218271810018025.
Pełny tekst źródłaEringen, A. C. "A mixture theory for geophysical fluids". Nonlinear Processes in Geophysics 11, nr 1 (25.02.2004): 75–82. http://dx.doi.org/10.5194/npg-11-75-2004.
Pełny tekst źródłaSrinivas, J., J. V. Ramana Murthy i Ali J. Chamkha. "Analysis of entropy generation in an inclined channel flow containing two immiscible micropolar fluids using HAM". International Journal of Numerical Methods for Heat & Fluid Flow 26, nr 3/4 (3.05.2016): 1027–49. http://dx.doi.org/10.1108/hff-09-2015-0354.
Pełny tekst źródłaLiang, Zhilei, i Dehua Wang. "Stationary Cahn–Hilliard–Navier–Stokes equations for the diffuse interface model of compressible flows". Mathematical Models and Methods in Applied Sciences 30, nr 12 (23.10.2020): 2445–86. http://dx.doi.org/10.1142/s0218202520500475.
Pełny tekst źródłaSava, Valeriu Al. "A spatial decay estimate of the flow equations of micropolar fluids". International Journal of Engineering Science 24, nr 3 (styczeń 1986): 449–52. http://dx.doi.org/10.1016/0020-7225(86)90099-6.
Pełny tekst źródłaChandrawat, Rajesh Kumar, Varun Joshi i O. Anwar Bég. "Ion Slip and Hall Effects on Generalized Time-Dependent Hydromagnetic Couette Flow of Immiscible Micropolar and Dusty Micropolar Fluids with Heat Transfer and Dissipation: A Numerical Study". Journal of Nanofluids 10, nr 3 (1.09.2021): 431–46. http://dx.doi.org/10.1166/jon.2021.1792.
Pełny tekst źródłaBenariba, Aboubakeur, Ahmed Bouzidane i Marc Thomas. "Analytical analysis of a rigid rotor mounted on three hydrostatic pads lubricated with micropolar fluids". Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 233, nr 6 (23.10.2018): 859–69. http://dx.doi.org/10.1177/1350650118806374.
Pełny tekst źródłaRafique, Anwar, Misiran, Khan, Baleanu, Nisar, Sherif i Seikh. "Hydromagnetic Flow of Micropolar Nanofluid". Symmetry 12, nr 2 (6.02.2020): 251. http://dx.doi.org/10.3390/sym12020251.
Pełny tekst źródłaChu, Li Ming, Jaw-Ren Lin, Yuh-Ping Chang i Chung-Chun Wu. "Elastohydrodynamic lubrication of circular contacts at pure squeeze motion with micropolar lubricants". Industrial Lubrication and Tribology 68, nr 6 (12.09.2016): 640–46. http://dx.doi.org/10.1108/ilt-10-2015-0139.
Pełny tekst źródłaAhmad, Farooq, A. Othman Almatroud, Sajjad Hussain, Shan E. Farooq i Roman Ullah. "Numerical Solution of Nonlinear Diff. Equations for Heat Transfer in Micropolar Fluids over a Stretching Domain". Mathematics 8, nr 5 (25.05.2020): 854. http://dx.doi.org/10.3390/math8050854.
Pełny tekst źródłaUddin, Ziya, Manoj Kumar i Souad Harmand. "Influence of thermal radiation and heat generation/absorption on MHD heat transfer flow of a micropolar fluid past a wedge considering hall and ion slip currents". Thermal Science 18, suppl.2 (2014): 489–502. http://dx.doi.org/10.2298/tsci110712085u.
Pełny tekst źródłaIDO, Yasushi, i Takahiko TANAHASHI. "Fundamental equations for magnetic fluids by micropolar theory. 1st report: Strain tensors and balance equations." Transactions of the Japan Society of Mechanical Engineers Series B 56, nr 525 (1990): 1385–91. http://dx.doi.org/10.1299/kikaib.56.1385.
Pełny tekst źródłaTangsali, Param R., Nagaraj N. Katagi, Ashwini Bhat i Manjunath Shettar. "Analysis of Magnetohydrodynamic Free Convection in Micropolar Fluids over a Permeable Shrinking Sheet with Slip Boundary Conditions". Symmetry 16, nr 4 (29.03.2024): 400. http://dx.doi.org/10.3390/sym16040400.
Pełny tekst źródłaChandrawat, Rajesh Kumar, Varun Joshi i O. Anwar Bég. "Numerical Study of Interface Tracking for the Unsteady Flow of Two Immiscible Micropolar and Newtonian Fluids Through a Horizontal Channel with an Unstable Interface". Journal of Nanofluids 10, nr 4 (1.12.2021): 552–63. http://dx.doi.org/10.1166/jon.2021.1805.
Pełny tekst źródłaCheruku, Vasavi, i B. Ravindra Reddy. "Numerical Study in Effect of Thermal Slip on Two Fluid Flow in a Vertical Channel". Transactions on Energy Systems and Engineering Applications 4, nr 2 (17.07.2023): 1–18. http://dx.doi.org/10.32397/tesea.vol4.n2.517.
Pełny tekst źródłaNabwey, Hossam A., Ahmed M. Rashad i Waqar A. Khan. "Slip Microrotation Flow of Silver-Sodium Alginate Nanofluid via Mixed Convection in a Porous Medium". Mathematics 9, nr 24 (14.12.2021): 3232. http://dx.doi.org/10.3390/math9243232.
Pełny tekst źródłaErofeev, V. I., A. V. Shekoyan i M. V. Belubekyan. "SPATIALLY-LOCALIZED NONLINEAR MAGNETOELASTIC WAVES IN A MICROPOLAR ELECTRICAL CONDUCTING MEDIUM". Problems of strenght and plasticity 81, nr 4 (2019): 402–15. http://dx.doi.org/10.32326/1814-9146-2019-81-4-402-415.
Pełny tekst źródłaNaduvinamani, N. B., i G. B. Marali. "Dynamic Reynolds equation for micropolar fluids and the analysis of plane inclined slider bearings with squeezing effect". Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 221, nr 7 (1.07.2007): 823–29. http://dx.doi.org/10.1243/13506501jet286.
Pełny tekst źródłaHasnain, Jafar, i Zaheer Abbas. "Entropy generation analysis on two-phase micropolar nanofluids flow in an inclined channel with convective heat transfer". Thermal Science 23, nr 3 Part B (2019): 1765–77. http://dx.doi.org/10.2298/tsci170715221h.
Pełny tekst źródłaNadeem, S., M. Y. Malik i Nadeem Abbas. "Heat transfer of three-dimensional micropolar fluid on a Riga plate". Canadian Journal of Physics 98, nr 1 (styczeń 2020): 32–38. http://dx.doi.org/10.1139/cjp-2018-0973.
Pełny tekst źródłaVADASZ, PETER. "Coriolis effect on gravity-driven convection in a rotating porous layer heated from below". Journal of Fluid Mechanics 376 (10.12.1998): 351–75. http://dx.doi.org/10.1017/s0022112098002961.
Pełny tekst źródłaEltayeb, I. A. "Convective instabilities of Maxwell–Cattaneo fluids". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, nr 2201 (maj 2017): 20160712. http://dx.doi.org/10.1098/rspa.2016.0712.
Pełny tekst źródłaChen, Mingtao, Bin Huang i Jianwen Zhang. "Blowup criterion for the three-dimensional equations of compressible viscous micropolar fluids with vacuum". Nonlinear Analysis: Theory, Methods & Applications 79 (marzec 2013): 1–11. http://dx.doi.org/10.1016/j.na.2012.10.013.
Pełny tekst źródłaAdeniyan, Adetunji, Gbeminiyi M. Sobamowo i Samsondeen O. Kehinde. "Impacts of Slips on Peristaltic flow and Heat transfer of micropolar fluids in an asymmetric channel". International Journal of Mathematical Analysis and Optimization: Theory and Applications 7, nr 2 (marzec 2022): 107–29. http://dx.doi.org/10.52968/28308561.
Pełny tekst źródłaDUAN, RENJUN, SEIJI UKAI, TONG YANG i HUIJIANG ZHAO. "OPTIMAL CONVERGENCE RATES FOR THE COMPRESSIBLE NAVIER–STOKES EQUATIONS WITH POTENTIAL FORCES". Mathematical Models and Methods in Applied Sciences 17, nr 05 (maj 2007): 737–58. http://dx.doi.org/10.1142/s021820250700208x.
Pełny tekst źródłaIshigaki, Yusuke, i Yoshihiro Ueda. "Stability of stationary solutions to outflow problem for compressible viscoelastic system in one dimensional half space". AIMS Mathematics 9, nr 11 (2024): 33215–53. http://dx.doi.org/10.3934/math.20241585.
Pełny tekst źródłaChandrawat, Rajesh Kumar, i Varun Joshi. "Numerical Solution of the Time-Depending Flow of Immiscible Fluids with Fuzzy Boundary Conditions". International Journal of Mathematical, Engineering and Management Sciences 6, nr 5 (1.10.2021): 1315–30. http://dx.doi.org/10.33889/ijmems.2021.6.5.079.
Pełny tekst źródłaLin, Hongxia, Sen Liu, Heng Zhang i Qing Sun. "Stability for a system of the 2D incompressible magneto-micropolar fluid equations with partial mixed dissipation". Nonlinearity 37, nr 5 (18.03.2024): 055001. http://dx.doi.org/10.1088/1361-6544/ad3098.
Pełny tekst źródłaCélérier, M. N. "Fully integrated interior solutions of GR for stationary rigidly rotating cylindrical perfect fluids". Journal of Mathematical Physics 64, nr 2 (1.02.2023): 022501. http://dx.doi.org/10.1063/5.0131945.
Pełny tekst źródła