Gotowa bibliografia na temat „SpMV Multiplication”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „SpMV Multiplication”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "SpMV Multiplication"
Giannoula, Christina, Ivan Fernandez, Juan Gómez-Luna, Nectarios Koziris, Georgios Goumas i Onur Mutlu. "Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures". ACM SIGMETRICS Performance Evaluation Review 50, nr 1 (20.06.2022): 33–34. http://dx.doi.org/10.1145/3547353.3522661.
Pełny tekst źródłaHe, Guixia, i Jiaquan Gao. "A Novel CSR-Based Sparse Matrix-Vector Multiplication on GPUs". Mathematical Problems in Engineering 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/8471283.
Pełny tekst źródłaGao, Jiaquan, Yuanshen Zhou i Kesong Wu. "A Novel Multi-GPU Parallel Optimization Model for The Sparse Matrix-Vector Multiplication". Parallel Processing Letters 26, nr 04 (grudzień 2016): 1640001. http://dx.doi.org/10.1142/s0129626416400016.
Pełny tekst źródłaAlAhmadi, Sarah, Thaha Mohammed, Aiiad Albeshri, Iyad Katib i Rashid Mehmood. "Performance Analysis of Sparse Matrix-Vector Multiplication (SpMV) on Graphics Processing Units (GPUs)". Electronics 9, nr 10 (13.10.2020): 1675. http://dx.doi.org/10.3390/electronics9101675.
Pełny tekst źródłaLiu, Sheng, Yasong Cao i Shuwei Sun. "Mapping and Optimization Method of SpMV on Multi-DSP Accelerator". Electronics 11, nr 22 (11.11.2022): 3699. http://dx.doi.org/10.3390/electronics11223699.
Pełny tekst źródłaAnzt, Hartwig, Stanimire Tomov i Jack Dongarra. "On the performance and energy efficiency of sparse linear algebra on GPUs". International Journal of High Performance Computing Applications 31, nr 5 (5.10.2016): 375–90. http://dx.doi.org/10.1177/1094342016672081.
Pełny tekst źródłaLiu, Jie. "Accuracy Controllable SpMV Optimization on GPU". Journal of Physics: Conference Series 2363, nr 1 (1.11.2022): 012008. http://dx.doi.org/10.1088/1742-6596/2363/1/012008.
Pełny tekst źródłaZeng, Guangsen, i Yi Zou. "Leveraging Memory Copy Overlap for Efficient Sparse Matrix-Vector Multiplication on GPUs". Electronics 12, nr 17 (31.08.2023): 3687. http://dx.doi.org/10.3390/electronics12173687.
Pełny tekst źródłaGao, Jiaquan, Panpan Qi i Guixia He. "Efficient CSR-Based Sparse Matrix-Vector Multiplication on GPU". Mathematical Problems in Engineering 2016 (2016): 1–14. http://dx.doi.org/10.1155/2016/4596943.
Pełny tekst źródłaChen, Shizhao, Jianbin Fang, Chuanfu Xu i Zheng Wang. "Adaptive Hybrid Storage Format for Sparse Matrix–Vector Multiplication on Multi-Core SIMD CPUs". Applied Sciences 12, nr 19 (29.09.2022): 9812. http://dx.doi.org/10.3390/app12199812.
Pełny tekst źródłaRozprawy doktorskie na temat "SpMV Multiplication"
Ashari, Arash. "Sparse Matrix-Vector Multiplication on GPU". The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417770100.
Pełny tekst źródłaGodwin, Jeswin Samuel. "High-Performancs Sparse Matrix-Vector Multiplication on GPUS for Structured Grid Computations". The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1357280824.
Pełny tekst źródłaBoyer, Brice. "Multiplication matricielle efficace et conception logicielle pour la bibliothèque de calcul exact LinBox". Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00767915.
Pełny tekst źródłaHong, Changwan. "Code Optimization on GPUs". The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1557123832601533.
Pełny tekst źródłaSingh, Kunal. "High-Performance Sparse Matrix-Multi Vector Multiplication on Multi-Core Architecture". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524089757826551.
Pełny tekst źródłaRamesh, Chinthala. "Hardware-Software Co-Design Accelerators for Sparse BLAS". Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4276.
Pełny tekst źródłaKsiążki na temat "SpMV Multiplication"
Bisseling, Rob H. Parallel Scientific Computation. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198788348.001.0001.
Pełny tekst źródłaCzęści książek na temat "SpMV Multiplication"
Khan, Muhammad Hannan, Osman Hassan i Shahid Khan. "Accelerating SpMV Multiplication in Probabilistic Model Checkers Using GPUs". W Theoretical Aspects of Computing – ICTAC 2021, 86–104. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85315-0_6.
Pełny tekst źródłaStoyanov, Dimitar, Rui Machado i Franz-Josef Pfreundt. "Task-Based Parallel Sparse Matrix-Vector Multiplication (SpMVM) with GPI-2". W Large-Scale Scientific Computing, 153–60. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26520-9_16.
Pełny tekst źródłaZekri, Ahmed S. "Three Dimensional SPMD Matrix–Matrix Multiplication Algorithm and a Stacked Many-Core Processor Architecture". W Lecture Notes in Electrical Engineering, 1139–50. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3535-8_94.
Pełny tekst źródłaGuo, Mingfeng, Yaobin Wang, Jun Huang, Qingfeng Wang, Yaqing Zhang, Mu Xu i Fang Lu. "Rgs-SpMM: Accelerate Sparse Matrix-Matrix Multiplication by Row Group Splitting Strategy on the GPU". W Lecture Notes in Computer Science, 61–66. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-21395-3_6.
Pełny tekst źródłaBisseling, Rob H. "Sparse matrix–vector multiplication". W Parallel Scientific Computation, 190–290. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198788348.003.0004.
Pełny tekst źródłaMpakos, Panagiotis, Nikela Papadopoulou, Chloe Alverti, Georgios Goumas i Nectarios Koziris. "On the Performance and Energy Efficiency of Sparse Matrix-Vector Multiplication on FPGAs". W Parallel Computing: Technology Trends. IOS Press, 2020. http://dx.doi.org/10.3233/apc200092.
Pełny tekst źródła"Sparse Linear Algebra". W Advances in Systems Analysis, Software Engineering, and High Performance Computing, 94–137. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-7082-1.ch004.
Pełny tekst źródłaJamalmohammed, Saira Banu, Lavanya K., Sumaiya Thaseen I. i Biju V. "Review on Sparse Matrix Storage Formats With Space Complexity Analysis". W Applications of Artificial Intelligence for Smart Technology, 122–45. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-3335-2.ch009.
Pełny tekst źródłaStreszczenia konferencji na temat "SpMV Multiplication"
Page, Brian A., i Peter M. Kogge. "Scalability of Hybrid Sparse Matrix Dense Vector (SpMV) Multiplication". W 2018 International Conference on High Performance Computing & Simulation (HPCS). IEEE, 2018. http://dx.doi.org/10.1109/hpcs.2018.00072.
Pełny tekst źródłaMerrill, Duane, i Michael Garland. "Merge-based sparse matrix-vector multiplication (SpMV) using the CSR storage format". W PPoPP '16: 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2851141.2851190.
Pełny tekst źródłaHou, Kaixi, Wu-chun Feng i Shuai Che. "Auto-Tuning Strategies for Parallelizing Sparse Matrix-Vector (SpMV) Multiplication on Multi- and Many-Core Processors". W 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2017. http://dx.doi.org/10.1109/ipdpsw.2017.155.
Pełny tekst źródłaSuresh, Krishnan, i Praveen Yadav. "Large-Scale Modal Analysis on Multi-Core Architectures". W ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70281.
Pełny tekst źródłaHuang, Guyue, Guohao Dai, Yu Wang i Huazhong Yang. "GE-SpMM: General-Purpose Sparse Matrix-Matrix Multiplication on GPUs for Graph Neural Networks". W SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020. http://dx.doi.org/10.1109/sc41405.2020.00076.
Pełny tekst źródła