Książki na temat „Spin polarized electrons”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Spin polarized electrons.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 24 najlepszych książek naukowych na temat „Spin polarized electrons”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj książki z różnych dziedzin i twórz odpowiednie bibliografie.

1

Nakamura, Katsuro. Longitudinal Double-Spin Asymmetry of Electrons from Heavy Flavor Decays in Polarized p + p Collisions at √s = 200 GeV. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54616-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Samarin, Sergey, Oleg Artamonov i Jim Williams. Spin-Polarized Two-Electron Spectroscopy of Surfaces. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00657-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

F, Bradamante, i Workshop on Polarized Electron Sources and Polarimeters (2004 : Trieste, Italy), red. SPIN 2004: Proceedings of the 16th International Spin Physics Symposium and Workshop on Polarized Electron Sources and Polarimeters, Trieste, Italy, 10-16 October 2004. Hackensack, N.J: World Scientific, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Allsworth, Max Daniel. The effect of spin-polarised electrons on superconductivity in a ferromagnet superconductor bilayer. Birmingham: University of Birmingham, 2002.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

International, Spin Physics Symposium (15th 2002 Upton N. Y. ). Spin 2002: 15th International Spin Physics Symposium, Upton, New York, 9-14 September 2002 and, Workshop on Polarized Electron Sources and Polarimeters, Danvers, Massachusetts 4-6 September 2002. Melville, N.Y: American Institute Of Physics, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Evans, Myron W. Electron spin and nuclear magnetic resonance in the presence of a circularly polarised laser: Angular momentum of radiation. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Hirohata, A., i J. Y. Kim. Optically Induced and Detected Spin Current. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0006.

Pełny tekst źródła
Streszczenie:
This chapter presents an alternative method of injecting spin-polarized electrons into a nonmagnetic semiconductor through photoexcitation. This method uses circularly-polarized light, whose energy needs to be the same as, or slightly larger than, the semiconductor band-gap, to excite spin-polarized electrons. This process will introduce a spin-polarized electron-hole pair, which can be detected as electrical signals. Such an optically induced spin-polarized current can only be generated in a direct band-gap semiconductor due to the selection rule described in the following sections. This introduction of circularly polarized light can also be used for spin-polarized scanning tunnelling microscopy.
Style APA, Harvard, Vancouver, ISO itp.
8

Kimura, T., i Y. Otani. Magnetization switching due to nonlocal spin injection. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0021.

Pełny tekst źródła
Streszczenie:
This chapter discusses and presents a schematic illustration of nonlocal spin injection. In this case, the spin-polarized electrons are injected from the ferromagnet and are extracted from the left-hand side of the nonmagnet. This results in the accumulation of nonequilibrium spins in the vicinity of the F/N junctions. Since the electrochemical potential on the left-hand side is lower than that underneath the F/N junction, the electron flows by the electric field. On the right-hand side, although there is no electric field, the diffusion process from the nonequilibrium into the equilibrium state induces the motion of the electrons. Since the excess up-spin electrons exist underneath the F/N junction, the up-spin electrons diffuse into the right-hand side. On the other hand, the deficiency of the down-spin electrons induces the incoming flow of the down-spin electrons opposite to the motion of the up-spin electron.
Style APA, Harvard, Vancouver, ISO itp.
9

Takanashi, K., i Y. Sakuraba. Spin polarization in magnets. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0005.

Pełny tekst źródła
Streszczenie:
This chapter explains how the exchange splitting between up- and down-spin bands in ferromagnets unexceptionally generates spin-polarized electronic states at the Fermi energy. The quantity of spin polarization P in ferromagnets is one of the important parameters for application in spintronics, since a ferromagnet having a higher P is able to generate larger various spin-dependent effects such as the magnetoresistance effect, spin transfer torque, spin accumulation, and so on. However, the spin polarizations of general 3d transition metals or alloys generally limit the size of spin-dependent effects. Thus,“‘half-metals” attract much interest as an ideal source of spin current and spin-dependent scattering because they possess perfectly spin-polarized conduction electrons due to the energy band gap in either the up- or down-spin channel at the Fermi level.
Style APA, Harvard, Vancouver, ISO itp.
10

Valenzuela, S. O., i T. Kimura. Experimental observation of the spin Hall effect using electronic nonlocal detection. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0014.

Pełny tekst źródła
Streszczenie:
This chapter shows how the spin Hall effect (SHE) has been described as a source of spin-polarized electrons for electronic applications without the need for ferromagnets or optical injection. Because spin accumulation does not produce an obvious measurable electrical signal, electronic detection of the SHE proved to be elusive and was preceded by optical demonstrations. Several experimental schemes for the electronic detection of the SHE had been originally proposed, including the use of ferromagnetic electrodes to determine the spin accumulation at the edges of the sample. However, the difficulty of sample fabrication and the presence of spin-related phenomena such as anisotropic magnetoresistance or the anomalous Hall effect in the ferromagnetic electrodes could mask or even mimic the SHE signal in the sample layouts.
Style APA, Harvard, Vancouver, ISO itp.
11

Suzuki, Y. Spin torque in uniform magnetization. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0020.

Pełny tekst źródła
Streszczenie:
This chapter discusses the effects of a spin current injected into a uniformly magnetized ferromagnetic cell. The junction consists of two ferromagnetic layers separated by a nonmagnetic metal interlayer or insulating barrier layer. With a nonmagnetic metal interlayer, the junction is called a giant magnetoresistive nanopillar, and with an insulating barrier layer a magnetic-tunnel junction. When charge current is passed through this device, the electrons are first spin polarized by the fixed layer and spin-polarized current is then injected into the free layer through the nonmagnetic interlayer. This spin current interacts with the spins in the host material by an exchange interaction and exerts a torque. If the exerted torque is large enough, magnetization in the free layer is reversed or continuous precession is excited.
Style APA, Harvard, Vancouver, ISO itp.
12

Nakamura, Katsuro. Longitudinal Double-Spin Asymmetry of Electrons from Heavy Flavor Decays in Polarized p + p Collisions at √s = 200 GeV. Springer, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Longitudinal Double-Spin Asymmetry of Electrons from Heavy Flavor Decays in Polarized p + p Collisions at √s = 200 GeV. Katsuro Nakamura, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Nakamura, Katsuro. Longitudinal Double-Spin Asymmetry of Electrons from Heavy Flavor Decays in Polarized p + p Collisions at √s = 200 GeV. Springer, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Nakamura, Katsuro. Longitudinal Double-Spin Asymmetry of Electrons from Heavy Flavor Decays in Polarized P + P Collisions at √s = 200 GeV. Springer London, Limited, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Samarin, Sergey, Oleg Artamonov i Jim Williams. Spin-Polarized Two-Electron Spectroscopy of Surfaces. Springer, 2019.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Samarin, Sergey, Oleg Artamonov i Jim Williams. Spin-Polarized Two-Electron Spectroscopy of Surfaces. Springer, 2018.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Glazov, M. M. Interaction of Spins with Light. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0006.

Pełny tekst źródła
Streszczenie:
This chapter presents the details of the optical manipulation of electron spin states. It also addresses manifestations of the electron and nuclear spin dynamics in optical response of semiconductor nanostructures via spin-Faraday and -Kerr effects. Coupling of spins with light provides the most efficient method of nonmagnetic spin manipulation. The main aim of this chapter is to provide the theoretical grounds for optical spin injection, ultrafast spin control, and readout of spin states by means of circularly and linearly polarized light pulses. The Faraday and Kerr effects induced by the electron and nuclear spin polarization are analyzed both by means of a macroscopic, semi-phenomenological approach and by using the microscopic quantum mechanical model. Theoretical analysis is supported by experimental data.
Style APA, Harvard, Vancouver, ISO itp.
19

Glazov, M. M. Dynamical Nuclear Polarization. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0005.

Pełny tekst źródła
Streszczenie:
The transfer of nonequilibrium spin polarization between the electron and nuclear subsystems is studied in detail. Usually, a thermal orientation of nuclei in magnetic field is negligible due to their small magnetic moments, but if electron spins are optically oriented, efficient nuclear spin polarization can occur. The microscopic approach to the dynamical nuclear polarization effect based on the kinetic equation method, along with a phenomenological but very powerful description of dynamical nuclear polarization in terms of the nuclear spin temperature concept is given. In this way, one can account for the interaction between neighbouring nuclei without solving a complex many-body problem. The hyperfine interaction also induces the feedback of polarized nuclei on the electron spin system giving rise to a number of nonlinear effects: bistability of nuclear spin polarization and anomalous Hanle effect, dragging and locking of optical resonances in quantum dots. Theory is illustrated by experimental data on dynamical nuclear polarization.
Style APA, Harvard, Vancouver, ISO itp.
20

Aulenbacher, Kurt, Italy) Spin 200 (2004 Trieste i Workshop on Polarized Electron Sources A. Spin 2004: 16th International Spin Physics Symposium; Workshop On Polerized Electron Sources and Polarimeters. World Scientific Publishing Company, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Glazov, M. M. Electron Spin Precession Mode Locking and Nuclei-Induced Frequency Focusing. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0009.

Pełny tekst źródła
Streszczenie:
This chapter addresses a rich variety of effects in spin dynamics arising under the conditions of pump-probe experiments. Here we consider the case where the electron spin is injected by a periodic train of circularly polarized pump pulses and precesses between the pulses in an external magnetic field. Nontrivial effects such as resonant spin amplification and spin coherence mode-locking take place due to commensurability of the repetition period of pump pulses and the charge carrier spin precession period. Theoretical approaches to describing the electron and nuclear spin coherence and experimental manifestations of these unusual regimes of spin dynamics are discussed in detail.
Style APA, Harvard, Vancouver, ISO itp.
22

Fromme, Bärbel. D-D Excitations in Transition-Metal Oxides: A Spin-Polarized Electron Energy-Loss Spectroscopy Study. Springer, 2007.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

(Editor), Yousef I. Makdisi, Alfredo U. Luccio (Editor) i William W. MacKay (Editor), red. SPIN 2002: 15th International Spin Physics Symposium and Workshop on Polarized Electron Sources and Polarimeters, Upton, NY, 9-14 September 2002 (AIP Conference Proceedings / High Energy Physics). American Institute of Physics, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

d-d Excitations in Transition-Metal Oxides: A Spin-Polarized Electron Energy-Loss Spectroscopy (SPEELS) Study (Springer Tracts in Modern Physics). Springer, 2001.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii