Artykuły w czasopismach na temat „Spin-orbit Coupling (SOC)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Spin-orbit Coupling (SOC)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Jabbarzadeh Sani, Mahnaz. "Spin-Orbit Coupling Effect on the Electrophilicity Index, Chemical Potential, Hardness and Softness of Neutral Gold Clusters: A Relativistic Ab-initio Study." HighTech and Innovation Journal 2, no. 1 (2021): 38–50. http://dx.doi.org/10.28991/hij-2021-02-01-05.
Pełny tekst źródłaJiang, Kun. "Correlation Renormalized and Induced Spin-Orbit Coupling." Chinese Physics Letters 40, no. 1 (2023): 017102. http://dx.doi.org/10.1088/0256-307x/40/1/017102.
Pełny tekst źródłaHuang, Peihao, and Xuedong Hu. "Spin manipulation and decoherence in a quantum dot mediated by a synthetic spin–orbit coupling of broken T-symmetry." New Journal of Physics 24, no. 1 (2021): 013002. http://dx.doi.org/10.1088/1367-2630/ac430c.
Pełny tekst źródłaZhang, Ning, Yunlong Xiao, and Wenjian Liu. "SOiCI and iCISO: combining iterative configuration interaction with spin–orbit coupling in two ways." Journal of Physics: Condensed Matter 34, no. 22 (2022): 224007. http://dx.doi.org/10.1088/1361-648x/ac5db4.
Pełny tekst źródłaKlebl, Lennart, Qiaoling Xu, Ammon Fischer, et al. "Moiré engineering of spin–orbit coupling in twisted platinum diselenide." Electronic Structure 4, no. 1 (2022): 014004. http://dx.doi.org/10.1088/2516-1075/ac49f5.
Pełny tekst źródłaGriesbeck, Axel, and Seyma Bozkus. "Spin Photochemistry: Electron Spin Multiplicity as a Tool for Reactivity and Selectivity Control." CHIMIA 75, no. 10 (2021): 868. http://dx.doi.org/10.2533/chimia.2021.868.
Pełny tekst źródłaNan, T., T. J. Anderson, J. Gibbons, et al. "Anisotropic spin-orbit torque generation in epitaxial SrIrO3 by symmetry design." Proceedings of the National Academy of Sciences 116, no. 33 (2019): 16186–91. http://dx.doi.org/10.1073/pnas.1812822116.
Pełny tekst źródłaJia, Yi-zhen, Wei-xiao Ji, Chang-wen Zhang, Shu-feng Zhang, Ping Li, and Pei-ji Wang. "Films based on group IV–V–VI elements for the design of a large-gap quantum spin Hall insulator with tunable Rashba splitting." RSC Advances 7, no. 19 (2017): 11636–43. http://dx.doi.org/10.1039/c6ra28838c.
Pełny tekst źródłaFU, XI, and GUANG-HUI ZHOU. "SPIN ACCUMULATION IN A QUANTUM WIRE WITH THE COEXISTENCE OF RASHBA AND DRESSELHAUSE SPIN–ORBIT COUPLING." International Journal of Modern Physics B 25, no. 26 (2011): 3495–502. http://dx.doi.org/10.1142/s0217979211101338.
Pełny tekst źródłaSingh, Ranber. "Spin–orbit splitting in graphene, silicene and germanene: Dependence on buckling." International Journal of Modern Physics B 32, no. 05 (2018): 1850055. http://dx.doi.org/10.1142/s0217979218500558.
Pełny tekst źródłaXiao, Yun-Chang, Ri-Xing Wang, and Ru-Shu Yang. "Dresselhaus spin-orbit coupling modulating pumps driven by triple potentials." Modern Physics Letters B 28, no. 19 (2014): 1450159. http://dx.doi.org/10.1142/s0217984914501590.
Pełny tekst źródłaYang, Rong, Bin Tang, and XiangYu Han. "Ab initio theory study of laser cooling of barium monohalides." RSC Advances 10, no. 35 (2020): 20778–83. http://dx.doi.org/10.1039/d0ra02211j.
Pełny tekst źródłaShao, Ziji, Yanping Huang, Defang Duan, et al. "Stable structures and superconductivity of an At–H system at high pressure." Physical Chemistry Chemical Physics 20, no. 38 (2018): 24783–89. http://dx.doi.org/10.1039/c8cp04317e.
Pełny tekst źródłaZhao, Duo, Xiaolei Wang, Zhijie Wang, and Dahai Wei. "Tuning superconductivity with spin–orbit coupling and proximity effects in ferromagnet/superconductor/ heavy metal heterostructures." Journal of Physics D: Applied Physics 55, no. 17 (2022): 175301. http://dx.doi.org/10.1088/1361-6463/ac4cf6.
Pełny tekst źródłaSafeer, C. K., Franz Herling, Won Young Choi, et al. "Reliability of spin-to-charge conversion measurements in graphene-based lateral spin valves." 2D Materials 9, no. 1 (2021): 015024. http://dx.doi.org/10.1088/2053-1583/ac3c9b.
Pełny tekst źródłaXiong, Wenqi, Congxin Xia, Yuting Peng, et al. "Spin–orbit coupling effects on electronic structures in stanene nanoribbons." Physical Chemistry Chemical Physics 18, no. 9 (2016): 6534–40. http://dx.doi.org/10.1039/c5cp07140b.
Pełny tekst źródłaXU, ZHONGHUI, XIANBO XIAO, and YUGUANG CHEN. "SPIN-DEPENDENT ELECTRON TRANSPORT THROUGH A THREE-TERMINAL MESOSCOPIC SPIN-ORBIT COUPLED SYSTEMS." International Journal of Modern Physics B 27, no. 07 (2013): 1361003. http://dx.doi.org/10.1142/s0217979213610031.
Pełny tekst źródłaGuo, San-Dong. "Thermoelectric properties of half-Heusler ZrNiPb by using first principles calculations." RSC Advances 6, no. 53 (2016): 47953–58. http://dx.doi.org/10.1039/c6ra08461c.
Pełny tekst źródłaFu, Xi, Wenhu Liao, and Guanghui Zhou. "Spin Accumulation in a Quantum Wire with Rashba Spin-Orbit Coupling." Advances in Condensed Matter Physics 2008 (2008): 1–5. http://dx.doi.org/10.1155/2008/152731.
Pełny tekst źródłaGaggioli, Carlo Alberto, Leonardo Belpassi, Francesco Tarantelli, Daniele Zuccaccia, Jeremy N. Harvey, and Paola Belanzoni. "Dioxygen insertion into the gold(i)–hydride bond: spin orbit coupling effects in the spotlight for oxidative addition." Chemical Science 7, no. 12 (2016): 7034–39. http://dx.doi.org/10.1039/c6sc02161a.
Pełny tekst źródłaTyagi, Udai Prakash, Kakoli Bera, and Partha Goswami. "Fledgling Quantum Spin Hall Effect in Pseudo Gap Phase of Bi2212." Symmetry 14, no. 8 (2022): 1746. http://dx.doi.org/10.3390/sym14081746.
Pełny tekst źródłaSharma, Chithra H., Pai Zhao, Lars Tiemann, et al. "Electron spin resonance in a proximity-coupled MoS2/graphene van der Waals heterostructure." AIP Advances 12, no. 3 (2022): 035111. http://dx.doi.org/10.1063/5.0077077.
Pełny tekst źródłaGaggioli, Carlo Alberto, Leonardo Belpassi, Francesco Tarantelli, Jeremy N. Harvey, and Paola Belanzoni. "The ligand effect on the oxidative addition of dioxygen to gold(i)–hydride complexes." Dalton Transactions 46, no. 35 (2017): 11679–90. http://dx.doi.org/10.1039/c7dt02170d.
Pełny tekst źródłaSantana-Suárez, E., and F. Mireles. "Impact of the p-cubic Dresselhaus term on the spin Hall effect." Condensed Matter Physics 26, no. 1 (2023): 13504. http://dx.doi.org/10.5488/cmp.26.13504.
Pełny tekst źródłaLiu, Qi, and WanZhen Liang. "Structure and property tunability in monolayer halide lead-free double hybrid perovskites: effects of Rashba and biaxial strain." Journal of Materials Chemistry A 7, no. 18 (2019): 11487–96. http://dx.doi.org/10.1039/c9ta01647c.
Pełny tekst źródłaKore, Ashish, Nisa Ara, and Poorva Singh. "First principle based investigation of topological insulating phase in half-Heusler family NaYO (Y = Ag, Au, and Cu)." Journal of Physics: Condensed Matter 34, no. 20 (2022): 205501. http://dx.doi.org/10.1088/1361-648x/ac57d7.
Pełny tekst źródłaFan, W. J., Z. Shi, F. L. Chen, and S. M. Zhou. "Tuning Effects of Spin–Orbit Coupling in L10 Ordered and Disordered FePdPt Films." SPIN 05, no. 03 (2015): 1530004. http://dx.doi.org/10.1142/s2010324715300042.
Pełny tekst źródłaXiao, Zheng-Yu, Yong-Ji Li, Wei Zhang, et al. "Enhancement of torque efficiency and spin Hall angle driven collaboratively by orbital torque and spin–orbit torque." Applied Physics Letters 121, no. 7 (2022): 072404. http://dx.doi.org/10.1063/5.0086125.
Pełny tekst źródłaLi, Hongwei, Shuxiang Wu, Dan Li, Gaili Wang, Ping Hu, and Shuwei Li. "Tailoring anomalous Hall effect by spin–orbit coupling in epitaxial Au/Fe4N bilayers." Applied Physics Letters 121, no. 26 (2022): 262401. http://dx.doi.org/10.1063/5.0120075.
Pełny tekst źródłaChen, Liang. "Hall effects in monolayer MoS2 with spin-orbit coupling under the shining of a circularly polarized light." Modern Physics Letters B 34, no. 16 (2020): 2050181. http://dx.doi.org/10.1142/s021798492050181x.
Pełny tekst źródłaFan, Yabin, and Kang L. Wang. "Spintronics Based on Topological Insulators." SPIN 06, no. 02 (2016): 1640001. http://dx.doi.org/10.1142/s2010324716400014.
Pełny tekst źródłaWang, Zhen-Hua, Fuming Xu, Lin Li, et al. "Spin–orbit proximity effect and topological superconductivity in graphene/transition-metal dichalcogenide nanoribbons." New Journal of Physics 23, no. 12 (2021): 123002. http://dx.doi.org/10.1088/1367-2630/ac33f5.
Pełny tekst źródłaChen, Xu-Lin, Rongmin Yu, Xiao-Yuan Wu, Dong Liang, Ji-Hui Jia, and Can-Zhong Lu. "Correction: A strongly greenish-blue-emitting Cu4Cl4 cluster with an efficient spin–orbit coupling (SOC): fast phosphorescence versus thermally activated delayed fluorescence." Chemical Communications 52, no. 49 (2016): 7738. http://dx.doi.org/10.1039/c6cc90240e.
Pełny tekst źródłaRømer, A. T., and B. M. Andersen. "Fluctuation-driven superconductivity in Sr2RuO4 from weak repulsive interactions." Modern Physics Letters B 34, no. 19n20 (2020): 2040052. http://dx.doi.org/10.1142/s0217984920400527.
Pełny tekst źródłaGuedes-Sobrinho, Diego, Renato P. Orenha, Renato L. T. Parreira, Glaucio R. Nagurniak, Gabriel Reynald Da Silva, and Maurício J. Piotrowski. "The effect of different energy portions on the 2D/3D stability swapping for 13-atom metal clusters." Physical Chemistry Chemical Physics 24, no. 11 (2022): 6515–24. http://dx.doi.org/10.1039/d2cp00148a.
Pełny tekst źródłaGONG, BAIHUA, XIN-HUI ZHANG, ER-HU ZHANG, and SHENG-LI ZHANG. "SPIN-ORBIT COUPLING IN GRAPHENE UNDER UNIAXIAL STRAIN: TIGHT-BINDING APPROACH AND FIRST-PRINCIPLES CALCULATIONS." Modern Physics Letters B 25, no. 11 (2011): 823–30. http://dx.doi.org/10.1142/s0217984911026097.
Pełny tekst źródłaFumanal, M., E. Gindensperger, and C. Daniel. "Ligand substitution and conformational effects on the ultrafast luminescent decay of [Re(CO)3(phen)(L)]+ (L = imidazole, pyridine): non-adiabatic quantum dynamics." Physical Chemistry Chemical Physics 20, no. 2 (2018): 1134–41. http://dx.doi.org/10.1039/c7cp07540e.
Pełny tekst źródłaJekal, Soyoung, Andreas Danilo, Dao Phuong, and Xiao Zheng. "First-Principles Prediction of Skyrmionic Phase Behavior in GdFe2 Films Capped by 4d and 5d Transition Metals." Applied Sciences 9, no. 4 (2019): 630. http://dx.doi.org/10.3390/app9040630.
Pełny tekst źródłaMarian, Christel M. "Understanding and Controlling Intersystem Crossing in Molecules." Annual Review of Physical Chemistry 72, no. 1 (2021): 617–40. http://dx.doi.org/10.1146/annurev-physchem-061020-053433.
Pełny tekst źródłaJia, Hong Ying, Xue Fang Dai, Li Ying Wang, et al. "The Effect of Spin-Orbit Coupling on the Electronic Structures and Half-Metallicity of Heusler Compounds: V2ReZ (Z=Al, Ga, ln)." Advanced Materials Research 683 (April 2013): 211–17. http://dx.doi.org/10.4028/www.scientific.net/amr.683.211.
Pełny tekst źródłaBhandari, Shalika Ram, Sarita Lawaju, Santosh KC, Gopi Chandra Kaphle, and Madhav Prasad Ghimire. "Electronic Structure and Magnetic Properties of Double Perovskites Ca2MnIrO6." BIBECHANA 19, no. 1-2 (2022): 127–32. http://dx.doi.org/10.3126/bibechana.v19i1-2.46404.
Pełny tekst źródłaLópez, Alexander, Solmar Varela, and Ernesto Medina. "Radiation modulated spin coupling in a double-stranded DNA model." Journal of Physics: Condensed Matter 34, no. 13 (2022): 135301. http://dx.doi.org/10.1088/1361-648x/ac48c1.
Pełny tekst źródłaAryal, Niraj, and Efstratios Manousakis. "Role of electron correlations in some Weyl systems." Journal of Physics: Conference Series 2122, no. 1 (2021): 012002. http://dx.doi.org/10.1088/1742-6596/2122/1/012002.
Pełny tekst źródłaLv, Ming-Hao, Chang-Ming Li, and Wei-Feng Sun. "Spin-Orbit Coupling and Spin-Polarized Electronic Structures of Janus Vanadium-Dichalcogenide Monolayers: First-Principles Calculations." Nanomaterials 12, no. 3 (2022): 382. http://dx.doi.org/10.3390/nano12030382.
Pełny tekst źródłaDecaroli, C., A. M. Arevalo-Lopez, C. H. Woodall, et al. "(C4H12N2)[CoCl4]: tetrahedrally coordinated Co2+without the orbital degeneracy." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 71, no. 1 (2015): 20–24. http://dx.doi.org/10.1107/s2052520614024809.
Pełny tekst źródłaYang, Shuai-Quan, Mao-Wang Lu, Qing-Meng Guo, Ying-Jie Qin та Shi-Shi Xie. "Manipulating Electron-Spin Polarization via a δ-Potential in an Embedded Magnetic-Electric-Barrier Microstructure". Journal of Nanoelectronics and Optoelectronics 16, № 9 (2021): 1417–22. http://dx.doi.org/10.1166/jno.2021.3094.
Pełny tekst źródłaWang, Xiaotian, Gaungqian Ding, Zhenxiang Cheng, Xiao-Lin Wang, Gang Zhang, and Tie Yang. "Intersecting nodal rings in orthorhombic-type BaLi2Sn compound." Journal of Materials Chemistry C 8, no. 16 (2020): 5461–66. http://dx.doi.org/10.1039/d0tc00504e.
Pełny tekst źródłaSharma, Vinay, Prabesh Bajracharya, Anthony Johnson, and Ramesh C. Budhani. "Interface-driven spin pumping and inverse Rashba-Edelstein effect in FeGaB/Ag/BiSb multilayers." AIP Advances 12, no. 3 (2022): 035028. http://dx.doi.org/10.1063/9.0000311.
Pełny tekst źródłaLin, Jiang-Xiazi, Ya-Hui Zhang, Erin Morissette, et al. "Spin-orbit–driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene." Science 375, no. 6579 (2022): 437–41. http://dx.doi.org/10.1126/science.abh2889.
Pełny tekst źródłaWang, Kewei, Hui Jin, Yunbin Lei, Yuan Zhao, Kaiyu Huang, and Siliu Xu. "Two-Dimensional Solitons in Bose–Einstein Condensates with Spin–Orbit Coupling and Rydberg–Rydberg Interaction." Photonics 9, no. 5 (2022): 283. http://dx.doi.org/10.3390/photonics9050283.
Pełny tekst źródła