Gotowa bibliografia na temat „Spin Injector”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Spin Injector”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Spin Injector"
Chen, Zhigao, Baigeng Wang, D. Y. Xing i Jian Wang. "A spin injector". Applied Physics Letters 85, nr 13 (27.09.2004): 2553–55. http://dx.doi.org/10.1063/1.1793335.
Pełny tekst źródłaTao, Bingshan, Philippe Barate, Xavier Devaux, Pierre Renucci, Julien Frougier, Abdelhak Djeffal, Shiheng Liang i in. "Atomic-scale understanding of high thermal stability of the Mo/CoFeB/MgO spin injector for spin-injection in remanence". Nanoscale 10, nr 21 (2018): 10213–20. http://dx.doi.org/10.1039/c8nr02250j.
Pełny tekst źródłaWANG, Y., A. P. LIU, J. BAO, X. G. XU i Y. JIANG. "SPIN INJECTION INTO TWO-DIMENSIONAL ELECTRON GAS THROUGH A SPIN-FILTERING INJECTOR". Modern Physics Letters B 22, nr 16 (30.06.2008): 1535–45. http://dx.doi.org/10.1142/s0217984908016273.
Pełny tekst źródłaChi, Feng, Xiao-Ning Dai i Lian-Liang Sun. "A quantum dot spin injector with spin bias". Applied Physics Letters 96, nr 8 (22.02.2010): 082102. http://dx.doi.org/10.1063/1.3327807.
Pełny tekst źródłaAriki, Taisei, Tatsuya Nomura, Kohei Ohnishi i Takashi Kimura. "Effective modulation of spin accumulation using a ferromagnetic/nonmagnetic bilayer spin channel". Journal of Physics D: Applied Physics 55, nr 9 (18.11.2021): 095302. http://dx.doi.org/10.1088/1361-6463/ac34aa.
Pełny tekst źródłaVed M. V., Dorokhin M. V., Lesnikov V. P., Kudrin A. V., Demina P. B., Zdoroveyshchev A. V. i Danilov Yu. A. "Circularly polarized electroluminescence at room temperature in heterostructures based on GaAs:Fe diluted magnetic semiconductor". Technical Physics Letters 48, nr 13 (2022): 76. http://dx.doi.org/10.21883/tpl.2022.13.53370.18836.
Pełny tekst źródłaGiazotto, F., i F. S. Bergeret. "Quantum interference hybrid spin-current injector". Applied Physics Letters 102, nr 16 (22.04.2013): 162406. http://dx.doi.org/10.1063/1.4802953.
Pełny tekst źródłaSalis, G., R. Wang, X. Jiang, R. M. Shelby, S. S. P. Parkin, S. R. Bank i J. S. Harris. "Temperature independence of the spin-injection efficiency of a MgO-based tunnel spin injector". Applied Physics Letters 87, nr 26 (26.12.2005): 262503. http://dx.doi.org/10.1063/1.2149369.
Pełny tekst źródłaZholud, A., i S. Urazhdin. "Microwave generation by spin Hall nanooscillators with nanopatterned spin injector". Applied Physics Letters 105, nr 11 (15.09.2014): 112404. http://dx.doi.org/10.1063/1.4896023.
Pełny tekst źródłaZozoulenko, I. V., i M. Evaldsson. "Quantum antidot as a controllable spin injector and spin filter". Applied Physics Letters 85, nr 15 (11.10.2004): 3136–38. http://dx.doi.org/10.1063/1.1804249.
Pełny tekst źródłaRozprawy doktorskie na temat "Spin Injector"
Van, Veenhuizen Marc Julien. "Investigation of the tunneling emitter bipolar transistor as spin-injector into silicon". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/63011.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 185-196).
In this thesis is discussed the tunneling emitter bipolar transistor as a possible spin-injector into silicon. The transistor has a metallic emitter which as a spin-injector will be a ferromagnet. Spin-polarized electrons from the ferromagnet tunnel directly into the conduction band of the base of the transistor and are subsequently swept into the collector. The tunneling emitter bipolar transistor as a spin-injector allows for large spin-polarized currents and naturally overcomes the conductivity mismatch and Schottky barrier formation. In this work, the various aspects of the transistor are analyzed. The transfer of spin-polarization across the base-collector junction is simulated. The oxide MgO is considered as a tunnel barrier for the transistor. Electron spin resonance is proposed as a measurement technique to probe the spin-polarization injected into the collector. The fabrication of the transistors is discussed and the importance of the tunnel barrier for the device operation is fully analyzed. The observation of negative differential transconductance in the transistor is explained. A number of side- or unrelated studies are presented as well. A study on scattered and secondary electrons in e-beam evaporation is described. Spin-orbit coupling induced spin-interference of ring-structures is proposed as a spin-detector. A new measurement technique to probe bias dependent magnetic noise in magnetic tunnel junctions is proposed. Also, an IV fitting program that can extract the relative importance of the tunnel and Schottky barrier is discussed and employed to fit the base-emitter IV characteristics of the transistor. The development of several fabrication and experimental tools is described as well.
by Marc Julien van Veenhuizen.
Ph.D.
Gao, Xue. "Injection de spin dans les semiconducteurs et les matériaux organiques". Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0059/document.
Pełny tekst źródłaSpintronics with semiconductors is very attractive as it can combine the potential of semiconductors with the potential of the magnetic materials. GaN has a long spin relaxation time, which could be of potential interest for spintronics applications. Organic spintronics is also very appealing because of the long spin lifetime of charge carriers in addition to their relatively low cost, flexibility, and chemical diversity. In this thesis, we investigate spin injection in spin LEDs containing either InAs/GaAs quantum dots or InGaN/GaN quantum wells. Moreover, we further study spin polarized transport in organic multiferroic tunnel junctions (OMFTJs). Firstly, we will show that the circular polarization of the light emitted by a LED containing a single layer of p-doped InAs/GaAs quantum dots (QDs) can reach about 18% under zero applied magnetic field. A clear correlation is established between the polarization degree of the emitted light and the perpendicular magnetization of the injector layer. The polarization reaches a maximum for an applied bias of 2.5V at 10K, which corresponds to an injected current of 6 µA. Also, we report a remarkable behavior of the polarization in the temperature region 60-80K. The interpretation of the bias and temperature dependence of the polarization is discussed in light of the competition between radiative recombination time τr and the spin relaxation time τs. In addition, significant efforts have been devoted to developing a perpendicular spin injector on GaN based materials to achieve spin injection without applying a magnetic field. Firstly, the growth of MgO has been investigated at various growth temperatures. Then, we studied the growth of either Fe or Co on MgO/GaN. In contrast to Fe/MgO, the Co/MgO spin injector yields a clear perpendicular magnetic anisotropy. In addition, ab-initio calculations have been performed to understand the origin of the perpendicular magnetic anisotropy at the Co/MgO(111) interface. Finally, we investigate multiferroic tunnel junctions (MFTJs) based on organic PVDF barriers doped with Fe3O4 nano particles. The organic MFTJs have recently attracted much attention since they can combine advantages of spintronics, organic and ferroelectric electronics. We report on the successful fabrication of La0.6Sr0.4MnO3/PVDF:Fe3O4/Co OMFTJ, where the poly(vinylidene fluoride) (PVDF) organic barrier has been doped with ferromagnetic Fe3O4 nanoparticles. By changing the polarization of the ferroelectric PVDF, the tunneling process in OMFTJ can be switched either through the LSMO/PVDF/Co part (positive polarization) or through the Fe3O4/PVDF/Co part (negative polarization). This corresponds to a reversal of tunneling magnetoresistance (TMR) from +10% to -50%, respectively. Our study shows that the doping of OMFTJs with magnetic nanoparticles can create new functionalities of organic spintronic devices by the interplay of nanoparticle magnetism with the ferroelectricity of the organic barrier
Gao, Xue. "Injection de spin dans les semiconducteurs et les matériaux organiques". Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0059.
Pełny tekst źródłaSpintronics with semiconductors is very attractive as it can combine the potential of semiconductors with the potential of the magnetic materials. GaN has a long spin relaxation time, which could be of potential interest for spintronics applications. Organic spintronics is also very appealing because of the long spin lifetime of charge carriers in addition to their relatively low cost, flexibility, and chemical diversity. In this thesis, we investigate spin injection in spin LEDs containing either InAs/GaAs quantum dots or InGaN/GaN quantum wells. Moreover, we further study spin polarized transport in organic multiferroic tunnel junctions (OMFTJs). Firstly, we will show that the circular polarization of the light emitted by a LED containing a single layer of p-doped InAs/GaAs quantum dots (QDs) can reach about 18% under zero applied magnetic field. A clear correlation is established between the polarization degree of the emitted light and the perpendicular magnetization of the injector layer. The polarization reaches a maximum for an applied bias of 2.5V at 10K, which corresponds to an injected current of 6 µA. Also, we report a remarkable behavior of the polarization in the temperature region 60-80K. The interpretation of the bias and temperature dependence of the polarization is discussed in light of the competition between radiative recombination time τr and the spin relaxation time τs. In addition, significant efforts have been devoted to developing a perpendicular spin injector on GaN based materials to achieve spin injection without applying a magnetic field. Firstly, the growth of MgO has been investigated at various growth temperatures. Then, we studied the growth of either Fe or Co on MgO/GaN. In contrast to Fe/MgO, the Co/MgO spin injector yields a clear perpendicular magnetic anisotropy. In addition, ab-initio calculations have been performed to understand the origin of the perpendicular magnetic anisotropy at the Co/MgO(111) interface. Finally, we investigate multiferroic tunnel junctions (MFTJs) based on organic PVDF barriers doped with Fe3O4 nano particles. The organic MFTJs have recently attracted much attention since they can combine advantages of spintronics, organic and ferroelectric electronics. We report on the successful fabrication of La0.6Sr0.4MnO3/PVDF:Fe3O4/Co OMFTJ, where the poly(vinylidene fluoride) (PVDF) organic barrier has been doped with ferromagnetic Fe3O4 nanoparticles. By changing the polarization of the ferroelectric PVDF, the tunneling process in OMFTJ can be switched either through the LSMO/PVDF/Co part (positive polarization) or through the Fe3O4/PVDF/Co part (negative polarization). This corresponds to a reversal of tunneling magnetoresistance (TMR) from +10% to -50%, respectively. Our study shows that the doping of OMFTJs with magnetic nanoparticles can create new functionalities of organic spintronic devices by the interplay of nanoparticle magnetism with the ferroelectricity of the organic barrier
Zhou, Ziqi. "Optical and Electrical Properties of Two-Dimensional Materials". Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0141.
Pełny tekst źródłaTwo-dimensional (2D) semiconductor materials exhibit overwhelming electrical, optical, magnetic, thermal and other advantages, which enables their great potential applications in ultra-thin, transparent and highly integrated optoelectronic devices. Searching new two-dimensional materials and exploring their optimal performance, as well as expanding the practical application of two-dimensional materials have been the cores of the researches of two-dimensional materials. This thesis focuses on the vertical magnetic control of the CoFeB film on a large-area single-layer MoS₂ film, which could expand the potential of two-dimensional materials in spin optical detectors, the Polarized Photodetection (anisotropy) based on noval two-dimensional semiconductor GeAs, and the optical characterizations of group IV-VI compounds like SnS and ZnSnS alloys. This paper introduces them in detail through the following three parts: 1. We research the fabrication of the Ta/CoFeB/MgO structures with large perpendicular magnetic anisotropies (PMA) on the full coverage MoS₂ monolayers. By optimizing the thickness of the CoFeB layer and the annealing temperature, a large perpendicular interface anisotropy energy of 0.975 mJ/m² has been obtained at the CoFeB/MgO interface. By analyzing the structural and the chemical properties of the heterostructure, it is found that the insertion of MgO between the ferromagnetic metal (FM) and the 2D material can effectively block the diffusion of the FM atoms into the 2D material, and that the Ta layer plays a critical role to efficiently absorb B atoms from the CoFeB layer to establish the PMA. From the results of ab initio calculations, the MgO thickness can be tuned to modify the MoS₂ band structure, from an indirect bandgap with 7 MLs MgO layers to a direct bandgap with 3 MLs MgO layers. The proximity effect induced by Fe results in a splitting of 10 meV in the valence band at the Γ point of the 3MLs MgO structure while it is negligible for the 7MLs MgO structure. 2. we research the anisotropic optical characterization of a group IV-V compound, Germanium Arsenic (GeAs), with anisotropic monoclinic structure. The in-plane anisotropic optical nature of GeAs crystal is further investigated by the polarization-resolved absorption spectroscopy (400-2000 nm) and the polarization-sensitive photodetectors. In the visible-to-near-infrared range, the 2D GeAs nanoflakes demonstrate the distinct perpendicular optical reversal with an angle of 75~80 degrees on both of the linear dichroism and the polarization-sensitive photodetection. Obvious anisotropic features and the high dichroic ratio of Ipmax/Ipmin ~ 1.49 at 520 nm and Ipmax/Ipmin ~ 4.4 at 830 nm are measured by the polarization-sensitive photodetection. The polarization-dependent photocurrent mapping implied that the polarized photocurrent mainly occurred at the Schottky photodiodes at the electrode/GeAs interface. 3. We research optical characterizations of group-IV-VI compounds like SnS and ZnSnS alloys. SnS nanosheets exhibit carrier mobility of 37.75 cm²·V⁻¹·s⁻¹, photoresponsivity of 310.5 A/W and external quantum efficiency of 8.56×104% at 450 nm. Optical absorption around the absorption edge presents obvious polarization sensitivity with the highest optical absorption dichroic ratio of 3.06 at 862 nm. Due to the anisotropic optical absorption, the polarized photocurrent appears upon the periodic change affected by the polarized direction of the incident light at 808 nm. The ZnSnS alloys combine the advantageous optical parameters of SnS and ZnS₂, which belong to the direct band structure of n-type 2D semiconductors. The carrier mobility of the alloy is 65 cm² V⁻¹ S⁻¹ and the on/off ratio under white-LED illumination is as high as 51
Aziz, A. "Spin injection into semiconductors". Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.596232.
Pełny tekst źródłaMooser, Sebastian Thomas. "Spin injection, spin transport and spin-charge conversion in organic semiconductors". Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608211.
Pełny tekst źródłaLin, Ran. "Organic spintronic devices utilizing spin-injection, spin-tunneling and spin-dependent transport". Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/5015.
Pełny tekst źródłaGarzon, Samir Y. "Spin injection and detection in copper spin valve structures". College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2192.
Pełny tekst źródłaThesis research directed by: Physics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Dash, Saroj Prasad. "Towards spin injection into silicon". Stuttgart Max-Planck-Institut für Metallforschung, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-33304.
Pełny tekst źródłaSeverac, Childerick Henri Louis. "Spin injection into high temperature superconductor". Thesis, University of Birmingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369295.
Pełny tekst źródłaKsiążki na temat "Spin Injector"
Jane, Ireland. Spin-injection into grain boundary junctions. Birmingham: University of Birmingham, 2002.
Znajdź pełny tekst źródłaAtlas of spine injection. Philadelphia, PA: W.B. Saunders, 2004.
Znajdź pełny tekst źródłaKimura, T., i Y. Otani. Magnetization switching due to nonlocal spin injection. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0021.
Pełny tekst źródłaWunderlich, J., K. Olejník, L. P. Zârbo, V. P. Amin, J. Sinova i T. Jungwirth. Spin-injection Hall effect. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0016.
Pełny tekst źródłaSuzuki, Y. Spin torque in uniform magnetization. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0020.
Pełny tekst źródłaEndres, Bernhard. Spin Injection into Gaas. Universitatsverlag Regensburg GmbH, 2013.
Znajdź pełny tekst źródłaGlazov, M. M. Interaction of Spins with Light. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0006.
Pełny tekst źródłaSpin Injection and Transport in Magnetoelectronics. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-08-7.
Pełny tekst źródłaFiorani, Dino, i P. Vincenzini. Spin Injection and Transport in Magnetoelectronics. Trans Tech Publications, Limited, 2006.
Znajdź pełny tekst źródłaRenfrew, Donald. Atlas of Spine Injection. Saunders, 2003.
Znajdź pełny tekst źródłaCzęści książek na temat "Spin Injector"
Borukhovich, Arnold S., i Alexey V. Troshin. "Creating a High-Temperature Spin Injector and a Spin-Wave Transistor Based on EuO". W Europium Monoxide, 163–85. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76741-3_7.
Pełny tekst źródłaJohnson, M. "Spin Injection". W Springer Series in Solid-State Sciences, 279–307. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78820-1_10.
Pełny tekst źródłaJohnson, Mark. "Spin Injection". W Springer Series in Solid-State Sciences, 329–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65436-2_10.
Pełny tekst źródłaBuhrman, Robert A. "Spin Injection, Spin Transport and Spin Transfer". W Spin Electronics, 35–48. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-017-0532-5_4.
Pełny tekst źródłaHai, Pham Nam, Le Duc Anh, Daisuke Sakaki, Masaaki Tanaka, Matthias Althammer, Eva-maria Karrer-müller, Sebastian T. B. Goennenwein i in. "Nanosession: Spin Injection and Transport". W Frontiers in Electronic Materials, 301–9. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527667703.ch50.
Pełny tekst źródłaLegat, M. "Lumbar Epidural Injection". W Minimally Invasive Spine Intervention, 125–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-63814-9_10.
Pełny tekst źródłaLegat, M. "Cervical Epidural Injection". W Minimally Invasive Spine Intervention, 117–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-63814-9_9.
Pełny tekst źródłaOhmori, C., S. Hiramatsu i T. Nakamura. "An Intense Polarized Beam by a Laser Ionization Injection". W High Energy Spin Physics, 124–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76661-9_23.
Pełny tekst źródłaShin, Sang-Ha. "Epidural Steroid Injection". W Transforaminal Endoscopy for Lumbar Spine, 305–9. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8971-1_21.
Pełny tekst źródłaWulfhorst, Jeannette, Andreas Vogel, Nils Kuhlmann, Ulrich Merkt i Guido Meier. "Spin Injection and Detection in Spin Valves with Integrated Tunnel Barriers". W Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals, 327–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10553-1_13.
Pełny tekst źródłaStreszczenia konferencji na temat "Spin Injector"
Lu, Y., S. Liang, T. Zhang, P. Barate, J. Frougier, P. Renucci, B. Xu i in. "Spin light emitting diode with CoFeB/MgO spin injector". W 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157058.
Pełny tekst źródłaZozoulenko, I. V. "Quantum antidot as a controllable spin injector and spin filter". W PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994635.
Pełny tekst źródłaPoltoratska, Y., R. Barday, U. Bonnes, M. Brunken, C. Eckardt, R. Eichhorn, J. Enders i in. "Status Report of the New Darmstadt Polarized Electron Injector". W SPIN PHYSICS: 18th International Spin Physics Symposium. AIP, 2009. http://dx.doi.org/10.1063/1.3215801.
Pełny tekst źródłaSaito, H., J. C. Le Breton, V. Zayets, Y. Mineno, S. Yuasa i K. Ando. "Spin injection into GaAs from Fe/GaOx Tunnel Injector". W 2010 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2010. http://dx.doi.org/10.7567/ssdm.2010.f-8-3.
Pełny tekst źródłaAvrutin, V., Ü. Özgür, J. Xie, Y. Fu, F. Yun, H. Morkoç i V. I. Litvinov. "Gd-implanted GaN as a candidate for spin injector". W Integrated Optoelectronic Devices 2006, redaktorzy Cole W. Litton, James G. Grote, Hadis Morkoc i Anupam Madhukar. SPIE, 2006. http://dx.doi.org/10.1117/12.646951.
Pełny tekst źródłaHILLERT, W., M. GOWIN i B. NEFF. "A NEW INJECTOR FOR POLARIZED ELECTRONS AT ELSA". W Proceedings of the Symposium of the Gerasimov-Drell-Hearn Sum Rule and the Nucleon Spin Structure in the Resonance Region. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811448_0033.
Pełny tekst źródłaRajendram Soundararajan, Preethi, Daniel Durox, Antoine Renaud i Sébastien Candel. "Azimuthal Instabilities of an Annular Combustor With Different Swirling Injectors". W ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-82281.
Pełny tekst źródłaJiang, X. "Efficient spin injection using tunnel injectors". W Proceedings. 2005 International Conference on MEMS, NANO and Smart Systems. IEEE, 2005. http://dx.doi.org/10.1109/icmens.2005.46.
Pełny tekst źródłaUemura, Tetsuya, Takafumi Akiho, Yuya Ebina i Masafumi Yamamoto. "Coherent manipulation of nuclear spins using spin injection from a half-metallic spin source". W SPIE Nanoscience + Engineering, redaktorzy Henri-Jean Drouhin, Jean-Eric Wegrowe i Manijeh Razeghi. SPIE, 2016. http://dx.doi.org/10.1117/12.2238793.
Pełny tekst źródłaAsshoff, Pablo, Gunter Wüst, Andreas Merz, Heinz Kalt, Michael Hetterich, Jisoon Ihm i Hyeonsik Cheong. "Polarizing nuclear spins in quantum dots by injection of a spin-polarized current". W PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666560.
Pełny tekst źródłaRaporty organizacyjne na temat "Spin Injector"
Ranjbar, Vahid H., M. Blaskiewicz, F. Meot, C. Montag i S. Tepikian. Spin Resonance Free Electron Ring Injector. Office of Scientific and Technical Information (OSTI), styczeń 2017. http://dx.doi.org/10.2172/1436273.
Pełny tekst źródłaHu, Bin. Spin Injection and its Effects on Lasing Action in Conjugated Polymers. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2009. http://dx.doi.org/10.21236/ada524321.
Pełny tekst źródłaTsoupas, N., T. Roser i A. Luccio. Stable Spin Direction of a Polarized Proton Beam at the Injection Point of RHIC. Office of Scientific and Technical Information (OSTI), marzec 1996. http://dx.doi.org/10.2172/1149804.
Pełny tekst źródłaBaah, Prince. Implementing Epoxy Injection in Concrete Overlaid Bridge Decks. Purdue University, 2023. http://dx.doi.org/10.5703/1288284317588.
Pełny tekst źródłaXiang, Kemeng, Huiming Hou i Ming Zhou. The efficacy of Cerus and Cucumis Polypeptide injection combined with Bisphosphonates on postmenopausal women with osteoporosis:A protocol for systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, maj 2022. http://dx.doi.org/10.37766/inplasy2022.5.0067.
Pełny tekst źródła