Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Spin currents.

Książki na temat „Spin currents”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych książek naukowych na temat „Spin currents”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj książki z różnych dziedzin i twórz odpowiednie bibliografie.

1

M, Aspden R., i Porter R. W, red. Lumbar spine disorders: Current concepts. Singapore: World Scientific, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

M, Bannister Carys, Tew Brian i Spastics Society, red. Current concepts in spina bifida and hydrocephalus. [London]: MacKeith Press, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

M, Bannister Carys, i Tew Brian, red. Current concepts in spina bifida and hydrocephalus. London: Mac Keith Press, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Ormazabal, Gaston S. Single pion production in charged and neutral current neutrino interactions. Irvington-on-Hudson, N.Y: Nevis Laboratories, Columbia University, Physics Department, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Cornella, Alfons. Business info-structure in Spain: Current situation and forthcoming challenges for business information in Spain. Barcelona: ESADE, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

G, Fessler Richard, i Haid Regis W, red. Current techniques in spinal stabilization. New York: McGraw-Hill, Health Professions Division, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

William, Foster David, Altamiranda Daniel i Urioste-Azcorra Carmen, red. Spanish literature: Current debates on Hispanism. New York: Garland Pub., 2001.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Supin-ryū to toporojikaru zetsuentai: Ryōshi bussei to supintoronikusu no hatten = Spin current and topological insulators. Tōkyō-to Bunkyō-ku: Kyōritsu Shuppan, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Gifra Adroher, Pere, i Jacqueline Hurtley. Hannah Lynch and Spain. Venice: Edizioni Ca' Foscari, 2018. http://dx.doi.org/10.30687/978-88-6969-292-5.

Pełny tekst źródła
Streszczenie:
For the first time the current volume brings together a fully annotated edition of Hannah Lynch’s articles on Spain – many of which are devoted to travel – together with a critical study of her connections with the country. Lynch, a cosmopolitan New Woman, viewed Spain with ambivalence, impatient of its resistance to change yet seduced by its landscapes and peoples. Her writing, revealing of her commitment to women’s emancipation, warrants attention from those wishing to further explore women’s contributions to the cultural and literary relations between Ireland and the Iberian Peninsula.
Style APA, Harvard, Vancouver, ISO itp.
10

P, Corbin Terry, red. Emerging spine surgery technologies: Current evidence and framework for evaluation of new technology. St. Louis, Mo: Quality Medical Pub., 2006.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Riphagen, F. E. Contraception in Spain: A study of current use, knowledge and perceptions of contraceptive methods. Geneva: International Health Foundation, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

University of Nevada, Reno. Center for Basque Studies, red. Implications of current research on social innovation in the Basque Country. Reno, Nev: Center for Basque Studies University of Nevada, Reno, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

S, Thalgott John, i Aebi M, red. Symposium, current concepts in the practice of internal fixation of the spine for traumatic, degenerative, and distructive disorders. [Hagerstown, MD: Lippincott], 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Clifford, Mishler, red. Standard catalog of world coins: Spain, Portugal, and the New World. Iola, WI: Krause Publications, 2002.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

1951-, Feinberg Richard, red. Current overviews in optical science and engineering II: A selection of overview papers from SPIE proceedings-summer/fall 1990. Bellingham, Wash. USA: SPIE Optical Engineering Press, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

1951-, Feinberg Richard, i Society of Photo-optical Instrumentation Engineers., red. Current overviews in optical science and engineering I a selection of overview papers from SPIE Proceedings--Winter/Spring 1990. Bellingham, Wash: SPIE Optical Engineering Press, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Sineo, Luca, i Roscoe Stanyon, red. Primate Cytogenetics and Comparative Genomics. Florence: Firenze University Press, 2006. http://dx.doi.org/10.36253/88-8453-384-8.

Pełny tekst źródła
Streszczenie:
This volume is a collection of contributions of a Florentine post congress symposium on "Primate Cytogenetics and Comparative Genomics" held on occasion of the XX International Primatological Congress (Turin in 2004). Comparative Molecular Cytogenetics and Genomics are two rapidly expanding fields. Researchers from Italy, Germany, Spain, United States and Japan meet in Florence to discuss over a two day period recent advances and summarize the current state of the science.
Style APA, Harvard, Vancouver, ISO itp.
18

Symposium on Internal Fixation (1991). Symposium - current concepts in the practice of internal fixation of the spine for traumatic, degenerative and destructive disorders, March 1991. Redaktorzy Thalgott John S i Aebi Max. Hagerstown, Md: Lippincott, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Maekawa, Sadamichi, Sergio O. Valenzuela, Eiji Saitoh i Takashi Kimura, red. Spin Current. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.001.0001.

Pełny tekst źródła
Streszczenie:
Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.
Style APA, Harvard, Vancouver, ISO itp.
20

Brataas, A., Y. Tserkovnyak, G. E. W. Bauer i P. J. Kelly. Spin pumping and spin transfer. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0008.

Pełny tekst źródła
Streszczenie:
This chapter discusses the interaction between currents and magnetization, which can cause undesirable effects such as enhanced magnetic noise in read heads made from magnetic multilayers. While most research has been carried out on metallic structures, current-induced magnetization dynamics in semiconductors or even insulators has been pursued as well. These issues have attracted many physicists because, on top of the practical aspects, the underlying phenomena are fascinating. Berger and Slonczewski are acknowledged to have started the field in general through their introduction of the concept of current-induced magnetization dynamics by the transfer of spin. The reciprocal effect, i.e., spin pumping, was expected long ago, but it took some time before Tserkovnyak et al. developed a rigorous theory of spin pumping for magnetic multilayers, including the associated increased magnetization damping.
Style APA, Harvard, Vancouver, ISO itp.
21

Saitoh, E. Topological spin current. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0004.

Pełny tekst źródła
Streszczenie:
This chapter discusses another type of equilibrium-spin current similar to the exchange-spin current—the topological spin current. Topological spin currents are driven by topological-band structure and classified into bulk and surface topological spin currents. The former is confined onto electron-band manifolds, sometimes affecting their motions. This confinement is addressed through the standard method of combining the equations of motion and the Boltzmann equation for semi-classical electrons in a band. The latter class, on the other hand, is a surface-spin current, which is limited near surfaces of a three-dimensional system and flows along these surfaces. This type is known to appear in topological insulators, where the bulk is insulating but the surface or edge is electrically conducting due to the surface or edge state.
Style APA, Harvard, Vancouver, ISO itp.
22

Nikolic, Branislav K., Liviu P. Zarbo i Satofumi Souma. Spin currents in semiconductor nanostructures: A non-equilibrium Green-function approach. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.24.

Pełny tekst źródła
Streszczenie:
This article examines spin currents and spin densities in realistic open semiconductor nanostructures using different tools of quantum-transport theory based on the non-equilibrium Green function (NEGF) approach. It begins with an introduction to the essential theoretical formalism and practical computational techniques before explaining what pure spin current is and how pure spin currents can be generated and detected. It then considers the spin-Hall effect (SHE), and especially the mesoscopic SHE, along with spin-orbit couplings in low-dimensional semiconductors. It also describes spin-current operator, spindensity, and spin accumulation in the presence of intrinsic spin-orbit couplings, as well as the NEGF approach to spin transport in multiterminal spin-orbit-coupled nanostructures. The article concludes by reviewing formal developments with examples drawn from the field of the mesoscopic SHE in low-dimensional spin-orbit-coupled semiconductor nanostructures.
Style APA, Harvard, Vancouver, ISO itp.
23

Bhat, Ravi Dinesh Rama. Interband optical injection and control of electron spin populations and ballistic spin currents in bulk semiconductors. 2006.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Takahashi, S., i S. Maekawa. Spin Hall Effect. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0012.

Pełny tekst źródła
Streszczenie:
This chapter discusses the spin Hall effect that occurs during spin injection from a ferromagnet to a nonmagnetic conductor in nanostructured devices. This provides a new opportunity for investigating AHE in nonmagnetic conductors. In ferromagnetic materials, the electrical current is carried by up-spin and downspin electrons, with the flow of up-spin electrons being slightly deflected in a transverse direction while that of down-spin electrons being deflected in the opposite direction; this results in an electron flow in the direction perpendicular to both the applied electric field and the magnetization directions. Since up-spin and downspin electrons are strongly imbalanced in ferromagnets, both spin and charge currents are generated in the transverse direction by AHE, the latter of which are observed as the electrical Hall voltage.
Style APA, Harvard, Vancouver, ISO itp.
25

Saitoh, E., i K. Ando. Experimental observation of the spin Hall effect using spin dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0015.

Pełny tekst źródła
Streszczenie:
This chapter describes an experiment on the inverse spin Hall effect (ISHE) induced by spin pumping. Spin pumping is the generation of spin currents as a result of magnetization M(t) precession; in a ferromagnetic/paramagnetic bilayer system, a conduction-electron spin current is pumped out of the ferromagnetic layer into the paramagnetic conduction layer in a ferromagnetic resonance condition. The sample used in the experiment is a Ni81Fe19/Pt bilayer film comprising a 10-nm-thick ferromagnetic Ni81Fe19layer and a 10-nm-thick paramagnetic Pt layer. For the measurement, the sample system is placed near the centre of a TE011 microwave cavity at which the magnetic-field component of the microwave mode is maximized while the electric-field component is minimized.
Style APA, Harvard, Vancouver, ISO itp.
26

Najmaie, Ali. Optical injection of spin currents in bulk and quantum well semiconductors. 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Kerachian, Yaser. Coherent control of charge currents, spin currents and carrier density in bulk GaAs using non-degenerate transient grating techniques. 2007.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Ansermet, J. Ph. Spintronics with metallic nanowires. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.3.

Pełny tekst źródła
Streszczenie:
This article focuses on spintronics with metallic nanowires. It begins with a review of the highlights of spintronics research, paying attention to the very important developments accomplished with tunnel junctions. It then considers the effect of current on magnetization before discussing spin diffusion and especially spin-dependent conductivities, spin-diffusion lengths, and spin accumulation. It also examines models for spin-polarized currents acting on magnetization, current-induced magnetization switching, and current-driven magnetic excitations. It concludes with an overview of resonant-current excitations, with emphasis on spin-valves and tunnel junctions as well as resonant excitation of spin-waves, domain walls and vortices. In addition, the article reflects on the future of spintronics, citing in particular the potential of the spin Hall effect as the method of generating spin accumulation, free of charge accumulation.
Style APA, Harvard, Vancouver, ISO itp.
29

Saitoh, E., i K. Ando. Exchange spin current. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0003.

Pełny tekst źródła
Streszczenie:
This chapter introduces the concept of exchange spin current, which derives from rewriting the exchange interaction in magnets and formulating a spin-wave spin current. States of matter can be classified into several types in terms of magnetic properties. In paramagnetic and diamagnetic states, matter has no magnetic order and exhibits zero magnetization in the absence of external magnetic fields. In ferromagnetic states, the permanent magnetic moments of atoms or ions align parallel to a certain direction, and the matter exhibits finite magnetization even in the absence of external magnetic fields. In ferrimagnets, the moments align antiparallel but the cancellation is not perfect and net magnetization appears. This interaction that aligns spins is called the exchange interaction.
Style APA, Harvard, Vancouver, ISO itp.
30

Maekawa, Sadamichi, Sergio O. Valenzuela, Eiji Saitoh i Takashi Kimura, red. Spin Current. Oxford University Press, 2012. http://dx.doi.org/10.1093/acprof:oso/9780199600380.001.0001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Spin Current. Oxford University Press, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Spin Current. Oxford University Press, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Maekawa, Sadamichi, Takashi Kimura, Sergio O. Valenzuela i Eiji Saitoh. Spin Current. Oxford University Press, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Maekawa, Sadamichi, i Sergio O. Valenzuela. Spin Current. Oxford University Press, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Maekawa, Sadamichi, Takashi Kimura, Sergio O. Valenzuela i Eiji Saitoh. Spin Current. Oxford University Press, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Baulieu, Laurent, John Iliopoulos i Roland Sénéor. Relativistic Wave Equations. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788393.003.0006.

Pełny tekst źródła
Streszczenie:
Relativistically covariant wave equations for scalar, spinor, and vector fields. Plane wave solutions and Green’s functions. The Klein–Gordon equation. The Dirac equation and the Clifford algebra of γ‎ matrices. Symmetries and conserved currents. Hamiltonian and Lagrangian formulations. Wave equations for spin-1 fields.
Style APA, Harvard, Vancouver, ISO itp.
37

Ando, K., i E. Saitoh. Incoherent spin current. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0002.

Pełny tekst źródła
Streszczenie:
This chapter introduces the concept of incoherent spin current. A diffusive spin current can be driven by spatial inhomogeneous spin density. Such spin flow is formulated using the spin diffusion equation with spin-dependent electrochemical potential. The chapter also proposes a solution to the problem known as the conductivity mismatch problem of spin injection into a semiconductor. A way to overcome the problem is by using a ferromagnetic semiconductor as a spin source; another is to insert a spin-dependent interface resistance at a metal–semiconductor interface.
Style APA, Harvard, Vancouver, ISO itp.
38

Morawetz, Klaus. Kinetic Theory of Systems with SU(2) Structure. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0021.

Pełny tekst źródła
Streszczenie:
Systems with spin-orbit coupling and magnetic fields exhibit a SU(2) structure. Large classes of materials and couplings can be written into an effective spin-orbit coupled Hamiltonian with Pauli structure. Appropriate kinetic equations are derived keeping the quantum spinor structure. It results in coupled kinetic equations of scalar and vector distributions. The spin-orbit coupling, the magnetic field and the vector part of the selfenergy can be written in terms of an effective Zeeman field which couples both distributions. The currents and linear response are derived and the anomalous parts due to the coupling of the occurring band splitting are discussed. The response in magnetic fields reveals subtle retardation effects from which the classical and quantum Hall effect result as well as anomalous Hall effects. As application the dynamical conductivity of grapheme is successfully calculated and compared to the experiments.
Style APA, Harvard, Vancouver, ISO itp.
39

Matsuo, M., E. Saitoh i S. Maekawa. Spin-Mechatronics—mechanical generation of spin and spin current. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0025.

Pełny tekst źródła
Streszczenie:
This chapter discusses interconversion phenomena between spin and mechanical angular momtum. In moving objects, the spin gauge fields emerge from inertial effects and produce angular momentum transfer between mechanical motion and spin. Such spin-mechanial effects are predicted by quantum theory in non-inertial frames, and confirmed by recent experiments including the resonance frequency shift in NMR, the stray field measurement of rotating metals, and the inverse spin Hall voltage generation in liquied metals. These spin-mechanical effects that arise via the spin-gauge fields open a new field of spintornics, where spin and mechanical motion couple harmoniously.
Style APA, Harvard, Vancouver, ISO itp.
40

Suzuki, Y. Spin torque in uniform magnetization. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0020.

Pełny tekst źródła
Streszczenie:
This chapter discusses the effects of a spin current injected into a uniformly magnetized ferromagnetic cell. The junction consists of two ferromagnetic layers separated by a nonmagnetic metal interlayer or insulating barrier layer. With a nonmagnetic metal interlayer, the junction is called a giant magnetoresistive nanopillar, and with an insulating barrier layer a magnetic-tunnel junction. When charge current is passed through this device, the electrons are first spin polarized by the fixed layer and spin-polarized current is then injected into the free layer through the nonmagnetic interlayer. This spin current interacts with the spins in the host material by an exchange interaction and exerts a torque. If the exerted torque is large enough, magnetization in the free layer is reversed or continuous precession is excited.
Style APA, Harvard, Vancouver, ISO itp.
41

Valenzuela, S. O. Introduction. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0011.

Pełny tekst źródła
Streszczenie:
This chapter begins with a definition of spin Hall effects, which are a group of phenomena that result from spin–orbit interaction. These phenomena link orbital motion to spin direction and act as a spin-dependent magnetic field. In its simplest form, an electrical current gives rise to a transverse spin current that induces spin accumulation at the boundaries of the sample, the direction of the spins being opposite at opposing boundaries. It can be intuitively understood by analogy with the Magnus effect, where a spinning ball in a fluid deviates from its straight path in a direction that depends on the sense of rotation. spin Hall effects can be associated with a variety of spin-orbit mechanisms, which can have intrinsic or extrinsic origin, and depend on the sample geometry, impurity band structure, and carrier density but do not require a magnetic field or any kind of magnetic order to occur.
Style APA, Harvard, Vancouver, ISO itp.
42

Hirohata, A., i J. Y. Kim. Optically Induced and Detected Spin Current. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0006.

Pełny tekst źródła
Streszczenie:
This chapter presents an alternative method of injecting spin-polarized electrons into a nonmagnetic semiconductor through photoexcitation. This method uses circularly-polarized light, whose energy needs to be the same as, or slightly larger than, the semiconductor band-gap, to excite spin-polarized electrons. This process will introduce a spin-polarized electron-hole pair, which can be detected as electrical signals. Such an optically induced spin-polarized current can only be generated in a direct band-gap semiconductor due to the selection rule described in the following sections. This introduction of circularly polarized light can also be used for spin-polarized scanning tunnelling microscopy.
Style APA, Harvard, Vancouver, ISO itp.
43

Narlikar, A. V., i Y. Y. Fu, red. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.001.0001.

Pełny tekst źródła
Streszczenie:
This Handbook consolidates some of the major scientific and technological achievements in different aspects of the field of nanoscience and technology. It consists of theoretical papers, many of which are linked with current and future nanodevices, molecular-based materials and junctions (including Josephson nanocontacts). Self-organization of nanoparticles, atomic chains, and nanostructures at surfaces are further described in detail. Topics include: a unified view of nanoelectronic devices; electronic and transport properties of doped silicon nanowires; quasi-ballistic electron transport in atomic wires; thermal transport of small systems; patterns and pathways in nanoparticle self-organization; nanotribology; and the electronic structure of epitaxial graphene. The volume also explores quantum-theoretical approaches to proteins and nucleic acids; magnetoresistive phenomena in nanoscale magnetic contacts; novel superconducting states in nanoscale superconductors; left-handed metamaterials; correlated electron transport in molecular junctions; spin currents in semiconductor nanostructures; and disorder-induced electron localization in molecular-based materials.
Style APA, Harvard, Vancouver, ISO itp.
44

Stamenova, M., i S. Sanvito. Atomistic spin-dynamics. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.7.

Pełny tekst źródła
Streszczenie:
This article reviews recent advances towards the development of a truly atomistic time-dependent theory for spin-dynamics. The focus is on the s-d tight-binding model [where conduction electrons (s) are exchange-coupled to a number of classical spins (d)], including electrostatic corrections at the Hartree level, as the underlying electronic structure theory. In particular, the article considers one-dimensional (1D) magnetic atomic wires and their electronic structure, described by means of the s-d model. The discussion begins with an overview of the model spin Hamiltonian, followed by molecular-dynamics simulations of spin-wave dispersion in a s-d monoatomic chain and spin impurities in a non-magnetic chain. The current-induced motion in a magnetic domain wall (DW) is also explored, along with how an electric current can affect the magnetization landscape of a magnetic nano-object. The article concludes with an assessment of spin-motive force, and especially whether a driven magnetization dynamics can generate an electrical signal.
Style APA, Harvard, Vancouver, ISO itp.
45

Kachelriess, Michael. Spin-1 and spin-2 fields. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198802877.003.0007.

Pełny tekst źródła
Streszczenie:
Massive and massless spin-1 and spin-2 fields, their field equations and propagators are studied. The connection between local gauge symmetry and the coupling to a conserved current is derived in the massless case. The dynamical stress tensor is defined as source of gravity, and its local conservation is shown. The basic ideas of large extra dimensions is outlined in an appendix.
Style APA, Harvard, Vancouver, ISO itp.
46

Aspden, R. M., i R. W. Porter. Lumbar Spine Disorders: Current Concepts. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/2667.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Aspden, R. M. Lumbar Spine Disorders: Current Concepts. World Scientific Pub Co Inc, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

(Editor), R. M. Aspden, i R. W. Porter (Editor), red. Lumbar Spine Disorders Current Concepts. World Scientific Pub Co Inc, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Uchida, K., R. Ramos i E. Saitoh. Spin Seebeck effect. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0018.

Pełny tekst źródła
Streszczenie:
Chapter 18 This chapter discusses the spin Seebeck effect (SSE), which stands for the generation of a spin current, a flow of spinangular momentum, as a result of a temperature gradient in magnetic materials. In spintronics and spin caloritronics, the SSE is of crucial importance because it enables simple and versatile generation of a spin current from heat. Since the SSE is driven by thermally excited magnon dynaimcs, the thermal spin current can be generated not only from ferromagnetic conductors but also from insulators. Therefore, the SSE is applicable to “insulator-based thermoelectric conversion” which was impossible if only conventional thermoelectric technologies were used. In this chapter, after introducing basic characteristics and mechanisms of the SSE, important experimental progresses, such as the high-magnetic-field response of the SSE and the enhancement of the SSE in multilayer systems, are reviewed.
Style APA, Harvard, Vancouver, ISO itp.
50

BoRovik-Romanov. Spin Super-Current and Magnetic Relaxation in Helium-3. Routledge, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii