Gotowa bibliografia na temat „Spike-and-slab priors”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Spike-and-slab priors”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Spike-and-slab priors"
Ročková, Veronika, i Edward I. George. "Negotiating multicollinearity with spike-and-slab priors". METRON 72, nr 2 (11.06.2014): 217–29. http://dx.doi.org/10.1007/s40300-014-0047-y.
Pełny tekst źródłaRockova, Veronika, i Kenichiro McAlinn. "Dynamic Variable Selection with Spike-and-Slab Process Priors". Bayesian Analysis 16, nr 1 (2021): 233–69. http://dx.doi.org/10.1214/20-ba1199.
Pełny tekst źródłaAntonelli, Joseph, Giovanni Parmigiani i Francesca Dominici. "High-Dimensional Confounding Adjustment Using Continuous Spike and Slab Priors". Bayesian Analysis 14, nr 3 (wrzesień 2019): 805–28. http://dx.doi.org/10.1214/18-ba1131.
Pełny tekst źródłaHernández-Lobato, José Miguel, Daniel Hernández-Lobato i Alberto Suárez. "Expectation propagation in linear regression models with spike-and-slab priors". Machine Learning 99, nr 3 (10.12.2014): 437–87. http://dx.doi.org/10.1007/s10994-014-5475-7.
Pełny tekst źródłaScheipl, Fabian, Ludwig Fahrmeir i Thomas Kneib. "Spike-and-Slab Priors for Function Selection in Structured Additive Regression Models". Journal of the American Statistical Association 107, nr 500 (17.10.2012): 1518–32. http://dx.doi.org/10.1080/01621459.2012.737742.
Pełny tekst źródłaYen, Tso-Jung. "A majorization–minimization approach to variable selection using spike and slab priors". Annals of Statistics 39, nr 3 (czerwiec 2011): 1748–75. http://dx.doi.org/10.1214/11-aos884.
Pełny tekst źródłaKoch, Brandon, David M. Vock, Julian Wolfson i Laura Boehm Vock. "Variable selection and estimation in causal inference using Bayesian spike and slab priors". Statistical Methods in Medical Research 29, nr 9 (15.01.2020): 2445–69. http://dx.doi.org/10.1177/0962280219898497.
Pełny tekst źródłaXi, Ruibin, Yunxiao Li i Yiming Hu. "Bayesian Quantile Regression Based on the Empirical Likelihood with Spike and Slab Priors". Bayesian Analysis 11, nr 3 (wrzesień 2016): 821–55. http://dx.doi.org/10.1214/15-ba975.
Pełny tekst źródłaLegramanti, Sirio, Daniele Durante i David B. Dunson. "Bayesian cumulative shrinkage for infinite factorizations". Biometrika 107, nr 3 (27.05.2020): 745–52. http://dx.doi.org/10.1093/biomet/asaa008.
Pełny tekst źródłaYi, Jieyi, i Niansheng Tang. "Variational Bayesian Inference in High-Dimensional Linear Mixed Models". Mathematics 10, nr 3 (31.01.2022): 463. http://dx.doi.org/10.3390/math10030463.
Pełny tekst źródłaRozprawy doktorskie na temat "Spike-and-slab priors"
Agarwal, Anjali. "Bayesian variable selection with spike-and-slab priors". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461940937.
Pełny tekst źródłaNaveau, Marion. "Procédures de sélection de variables en grande dimension dans les modèles non-linéaires à effets mixtes. Application en amélioration des plantes". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM031.
Pełny tekst źródłaMixed-effects models analyze observations collected repeatedly from several individuals, attributing variability to different sources (intra-individual, inter-individual, residual). Accounting for this variability is essential to characterize the underlying biological mechanisms without biais. These models use covariates and random effects to describe variability among individuals: covariates explain differences due to observed characteristics, while random effects represent the variability not attributable to measured covariates. In high-dimensional context, where the number of covariates exceeds the number of individuals, identifying influential covariates is challenging, as selection focuses on latent variables in the model. Many procedures have been developed for linear mixed-effects models, but contributions for non-linear models are rare and lack theoretical foundations. This thesis aims to develop a high-dimensional covariate selection procedure for non-linear mixed-effects models by studying their practical implementations and theoretical properties. This procedure is based on the use of a gaussian spike-and-slab prior and the SAEM algorithm (Stochastic Approximation of Expectation Maximisation Algorithm). Posterior contraction rates around true parameter values in a non-linear mixed-effects model under a discrete spike-and-slab prior have been obtained, comparable to those observed in linear models. The work in this thesis is motivated by practical questions in plant breeding, where these models describe plant development as a function of their genotypes and environmental conditions. The considered covariates are generally numerous since varieties are characterized by thousands of genetic markers, most of which have no effect on certain phenotypic traits. The statistical method developed in the thesis is applied to a real dataset related to this application
Mismer, Romain. "Convergence et spike and Slab Bayesian posterior distributions in some high dimensional models". Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCC064.
Pełny tekst źródłaThe first main focus is the sparse Gaussian sequence model. An Empirical Bayes approach is used on the Spike and Slab prior to derive minimax convergence of the posterior second moment for Cauchy Slabs and a suboptimality result for the Laplace Slab is proved. Next, with a special choice of Slab convergence with the sharp minimax constant is derived. The second main focus is the density estimation model using a special Polya tree prior where the variables in the tree construction follow a Spike and Slab type distribution. Adaptive minimax convergence in the supremum norm of the posterior distribution as well as a nonparametric Bernstein-von Mises theorem are obtained
Sharp, Kevin John. "Effective Bayesian inference for sparse factor analysis models". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/effective-bayesian-inference-for-sparse-factor-analysis-models(4facfde0-0aae-4f09-aeaa-960111e854ff).html.
Pełny tekst źródłaXu, Lizhen. "Bayesian Methods for Genetic Association Studies". Thesis, 2012. http://hdl.handle.net/1807/34972.
Pełny tekst źródłaCzęści książek na temat "Spike-and-slab priors"
Vannucci, Marina. "Discrete Spike-and-Slab Priors: Models and Computational Aspects". W Handbook of Bayesian Variable Selection, 3–24. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003089018-1.
Pełny tekst źródłaNarisetty, Naveen N. "Theoretical and Computational Aspects of Continuous Spike-and-Slab Priors". W Handbook of Bayesian Variable Selection, 57–80. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003089018-3.
Pełny tekst źródłaZhou, Shuang, i Debdeep Pati. "Recent Theoretical Advances with the Discrete Spike-and-Slab Priors". W Handbook of Bayesian Variable Selection, 25–56. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003089018-2.
Pełny tekst źródłaWu, Shengyi, Kaito Shimamura, Kohei Yoshikawa, Kazuaki Murayama i Shuichi Kawano. "Variable Fusion for Bayesian Linear Regression via Spike-and-slab Priors". W Intelligent Decision Technologies, 491–501. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2765-1_41.
Pełny tekst źródłaNayek, Rajdip, Keith Worden i Elizabeth J. Cross. "Equation Discovery Using an Efficient Variational Bayesian Approach with Spike-and-Slab Priors". W Model Validation and Uncertainty Quantification, Volume 3, 149–61. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77348-9_19.
Pełny tekst źródłaStreszczenia konferencji na temat "Spike-and-slab priors"
Suo, Yuanming, Minh Dao, Trac Tran, Umamahesh Srinivas i Vishal Monga. "Hierarchical sparse modeling using Spike and Slab priors". W ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2013. http://dx.doi.org/10.1109/icassp.2013.6638229.
Pełny tekst źródłaMonga, Vishal. "Sparsity constrained estimation via spike and slab priors". W 2017 51st Annual Conference on Information Sciences and Systems (CISS). IEEE, 2017. http://dx.doi.org/10.1109/ciss.2017.7926168.
Pełny tekst źródłaFang, Shikai, Shandian Zhe, Kuang-chih Lee, Kai Zhang i Jennifer Neville. "Online Bayesian Sparse Learning with Spike and Slab Priors". W 2020 IEEE International Conference on Data Mining (ICDM). IEEE, 2020. http://dx.doi.org/10.1109/icdm50108.2020.00023.
Pełny tekst źródłaMousavi, Hojjat S., Umamahesh Srinivas, Vishal Monga, Yuanming Suo, Minh Dao i Trac D. Tran. "Multi-task image classification via collaborative, hierarchical spike-and-slab priors". W 2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2014. http://dx.doi.org/10.1109/icip.2014.7025860.
Pełny tekst źródłaShuku, T., i K. K. Phoon. "Bayesian Estimation for Subsurface Models using Spike-and-Slab Prior". W 8th International Symposium on Reliability Engineering and Risk Management. Singapore: Research Publishing Services, 2022. http://dx.doi.org/10.3850/978-981-18-5184-1_ms-13-045-cd.
Pełny tekst źródłaLiu, Yuhang, Wenyong Dong, Wanjuan Song i Lei Zhang. "Bayesian Nonnegative Matrix Factorization with a Truncated Spike-and-Slab Prior". W 2019 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2019. http://dx.doi.org/10.1109/icme.2019.00251.
Pełny tekst źródłaLv, Fuzai, Changhao Zhang, Zhifeng Tang i Pengfei Zhang. "Block-Sparse Signal Recovery Based on Adaptive Matching Pursuit via Spike and Slab Prior". W 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM). IEEE, 2020. http://dx.doi.org/10.1109/sam48682.2020.9104311.
Pełny tekst źródłaZhang, Xiaoxu, Li Hao i Jiaqi Liu. "Spike and Slab Prior Based Joint Sparse Channel Estimation and Multiuser Detection in MTC Communications". W 2020 International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2020. http://dx.doi.org/10.1109/wcsp49889.2020.9299766.
Pełny tekst źródłaSun, Weitian, Lei Yang, Yuchen Dou, Xuan Li i Cheng Fang. "Auto-focused Sparse Bayesian Learning for ISAR Imagery Based on Spike-and-Slab Prior Via Variational Approximation". W 2021 International Conference on Control, Automation and Information Sciences (ICCAIS). IEEE, 2021. http://dx.doi.org/10.1109/iccais52680.2021.9624613.
Pełny tekst źródła