Gotowa bibliografia na temat „Spherical Population”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Spherical Population”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Spherical Population"
Al-Sayyari, Tarfah M., Samah M. Fawzy i Ahmed A. Al-Saleh. "Corneal spherical aberration in Saudi population". Saudi Journal of Ophthalmology 28, nr 3 (lipiec 2014): 207–13. http://dx.doi.org/10.1016/j.sjopt.2014.03.003.
Pełny tekst źródłaSoker, Noam, i Eyal Subag. "A Possible Hidden Population of Spherical Planetary Nebulae". Astronomical Journal 130, nr 6 (grudzień 2005): 2717–24. http://dx.doi.org/10.1086/497295.
Pełny tekst źródłaTobler, W. "Preliminary representation of world population by spherical harmonics." Proceedings of the National Academy of Sciences 89, nr 14 (15.07.1992): 6262–64. http://dx.doi.org/10.1073/pnas.89.14.6262.
Pełny tekst źródłaTobler, Waldo, Uwe Deichmann, Jon Gottsegen i Kelly Maloy. "World population in a grid of spherical quadrilaterals". International Journal of Population Geography 3, nr 3 (wrzesień 1997): 203–25. http://dx.doi.org/10.1002/(sici)1099-1220(199709)3:3<203::aid-ijpg68>3.0.co;2-c.
Pełny tekst źródłaAsano, Hiroki, Takahiro Hiraoka, Yusuke Seki, Teppei Shibata, Hiromi Osada, Takanori Saruta, Natsuko Hatsusaka i in. "Distribution of corneal spherical aberration in a Tanzanian population". PLOS ONE 14, nr 9 (12.09.2019): e0222297. http://dx.doi.org/10.1371/journal.pone.0222297.
Pełny tekst źródłaBaur, Isabella D., Gerd U. Auffarth, Ramin Khoramnia i Grzegorz Łabuz. "Spherical Aberration of Astigmatic Corneas in a Cataract Population". Journal of Refractive Surgery 39, nr 8 (sierpień 2023): 532–38. http://dx.doi.org/10.3928/1081597x-20230717-01.
Pełny tekst źródłaKeaveney, Nicola, Laura Boyle i Matt Redman. "Shaping of Planetary Nebulae by Exoplanets". Galaxies 8, nr 2 (14.05.2020): 41. http://dx.doi.org/10.3390/galaxies8020041.
Pełny tekst źródłaKusztelak, Grzegorz, Adam Lipowski i Jacek Kucharski. "Population Symmetrization in Genetic Algorithms". Applied Sciences 12, nr 11 (27.05.2022): 5426. http://dx.doi.org/10.3390/app12115426.
Pełny tekst źródłaGordiyenko, O. I., Yu E. Gordiyenko i V. O. Makedonska. "Estimation of erythrocyte population state by the spherical index distribution". Bioelectrochemistry 62, nr 2 (maj 2004): 119–22. http://dx.doi.org/10.1016/j.bioelechem.2003.08.004.
Pełny tekst źródłaFujimoto, Shin-ichiro, Masa-aki Hashimoto, Masaomi Ono i Kei Kotake. "Nucleosynthesis in neutrino-driven, aspherical Population III supernovae". Proceedings of the International Astronomical Union 7, S279 (kwiecień 2011): 237–40. http://dx.doi.org/10.1017/s1743921312012987.
Pełny tekst źródłaRozprawy doktorskie na temat "Spherical Population"
PILLAI, Vinoshene. "Intravital two photon clcium imaging of glioblastoma mouse models". Doctoral thesis, Scuola Normale Superiore, 2021. http://hdl.handle.net/11384/109211.
Pełny tekst źródłaCzęści książek na temat "Spherical Population"
Opara, Karol R. "Spherical Model of Population Dynamics in Differential Evolution". W Studies in Computational Intelligence, 23–42. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8082-3_2.
Pełny tekst źródłaAssemlal, Haz-Edine, Jennifer Campbell, Bruce Pike i Kaleem Siddiqi. "Apparent Intravoxel Fibre Population Dispersion (FPD) Using Spherical Harmonics". W Lecture Notes in Computer Science, 157–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23629-7_20.
Pełny tekst źródłaBesozzi, Daniela, i Grzegorz Rozenberg. "Formalizing Spherical Membrane Structures and Membrane Proteins Populations". W Membrane Computing, 18–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11963516_2.
Pełny tekst źródłaBlows, Mark, i Bruce Walsh. "Spherical Cows Grazing in Flatland: Constraints to Selection and Adaptation". W Adaptation and Fitness in Animal Populations, 83–101. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9005-9_6.
Pełny tekst źródłaHernandez-Pajares, M., i J. Nuñez. "The Spherical Harmonics as an Alternative Tool for Determining the Kinematical Parameters of the Local Milky Way". W The Stellar Populations of Galaxies, 431. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2434-8_98.
Pełny tekst źródłaDhang, Partho, Philip Koehler, Roberto Pereira i Daniel D. Dye II. "Mosquitoes." W Key questions in urban pest management: a study and revision guide, 23–30. Wallingford: CABI, 2022. http://dx.doi.org/10.1079/9781800620179.0003.
Pełny tekst źródłaCoppens, Philip. "Space Partitioning and Topological Analysis of the Total Charge Density". W X-Ray Charge Densities and Chemical Bonding. Oxford University Press, 1997. http://dx.doi.org/10.1093/oso/9780195098235.003.0008.
Pełny tekst źródłaSelvakumar, Raman. "An Update on Radish Breeding Strategies: An Overview". W Plant Breeding - New Perspectives [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.108725.
Pełny tekst źródłaTuck, Adrian F. "Relevant Subjects". W Atmospheric Turbulence. Oxford University Press, 2008. http://dx.doi.org/10.1093/oso/9780199236534.003.0006.
Pełny tekst źródła"maize, 1.4-2.7%; of waxy barley, 2.1-8.3%; and of waxy swell only slightly in cold water. Granules differ in size rice 0-2.3%; thus the range of amylose contents of the and shape among plants. For example, corn starch has an waxy wheats is comparable to that of other waxy cereal average diameter of about 15 1.1,M, wheat starch has a bi-grains. Biochemical features of starch from waxy wheats modal size distribution of 25-40 and 5-10 [tm, potato are similar to those of waxy maize [71]. starch has an average size of 40 WTI, and rice starch has an Starch from barley contains 22-26% amylose, the rest average size of 5µm [99]. being amylopectin [28]. However, samples of 11-26% The particle sizes of starch granules have recently re-amylose are known, and starch from waxy barley contains ceived much attention because of their important roles in only 0-3% amylose, while high-amylose starches contain determining both the taste and mouthfeel of fat substitutes up to 45%. and the tensible properties of degradable plastic films. Amylose content of rice is categorized as very low Daniel and Whistler [39] reported that small-granule (0-9%), low (9-20%), intermediate (20-25%), or high starch about 2 !um in diameter, or similar in size to the lipid (25-33%) [124]. The amylose content of long grain rice micelle, had advantages as a fat substitute. Lim et al. [117] ranges from 23 to 26%, while medium grain ranges from investigated the use of starches of different particle size in 15 to 20% and short grain ranges from 18 to 20% [103]. degradable plastic film. They reported that a linear correla-Oat amylose content (16-27%) is similar to that of tion between film thickness and particle size and an in-wheat starch, but oat amylose is more linear and oat amy-verse linear correlation between film thickness and particle lopectin is more branched than that found in wheat [121]. size. Small-granule starches may also be used as face pow-Most sorghum starch is similar in composition to corn der or dusting powder, as a stabilizer in baking powder, and contains 70-80% branched amylopectin and 21-28% and as laundry-stiffening agents. amylose [127]. However, waxy or glutinous sorghum con-The size of the wheat starch granule is 1-30 lam, the tains starch with 100% amylopectin and has unique prop-size distribution being bimodal. Such a bimodal size distri-erties similar to waxy corn [158]. Badi et al. [11] reported bution is characteristic of wheat starch, as well as of rye 17% amylose in starch from one pearl milled population. and barley starches. Wheat starch consists of two basic Gracza [69] reviewed the minor constituents of starch. forms: small spherical granules (about 5-10 wri) and larg-Cereal starches contain low levels of lipids. Usually, the er lenticular granules (about 25-4011m). The small B-gran-lipids associated with starch are polar lipids. Generally, the ules are spherical and have a diameter of less than 10 wrt; level of lipids in cereal starch is between 0.5 and 1%. Be-a mean value of about 4 lam has been reported. The large sides low levels of other minerals, starches contain phos-A-granules are lenticular and have a diameter greater than phorus and nitrogen. In the cereals, phosphorus occurs 10 lam, with a mean 14.11.1m. In reality, the granules have a mostly in the form of phospholipids. The nitrogen is gener-continuous distribution of granule size within the range ally considered to be present as protein, but it may also be designated for that starch. Amylose and amylopectin are a constituent of the lipid fraction. intermixed and distributed evenly throughout the granule. The interaction between amylose and lipids is more Many believe that the composition and properties of small powerful by far than that between amylopectin and lipids and large granules are similar, but this is a subject of some [55]. It is well established that polar lipids (e.g., mono-argument and the subject of many research studies [42]. glycerides, fatty acids, and similar compounds) form a hel-Kulp [110] evaluated the fundamental and bread-mak-ical inclusion complex with the amylose molecule, be-ing properties of small wheat starch granules and com-tween the hydrocarbon chain of the lipid and the interior of pared them with those of regular starch. Small granules the amylose helix. were found to be lower in iodine affinity, indicating differ-ences in amylose levels or some fundamental structural differences. Gelatinization temperature ranges, water-binding capacities, and enzymic susceptibilities of small Starch is laid down in the shape of particles in special amy-granules were higher than those of regular ones. loplast cells in the plant. These particles are called gran-Rice has one of the smallest starch granules of cereal ules, and they are the means by which the plant stores en-grains, ranging in size from 3 to 5 pm in the mature grain, ergy for the carbohydrate in a space-saving way, but also to although the small granules of wheat starch are almost the make the energy easily accessible when the seed germi-same size [33]. The small granule size of that starch results nates [57]. One starch granule is synthesized in each amy-in physical properties that make it useful as a dusting flour loplast, and the shape and size of a starch granule is typical in bakeries. Rice starch amyloses have degree of polymer-of its botanical origin. ization (DP) values of 1000-1100 and average chain Starch granules are relatively dense, insoluble, and lengths of 250-320. These structural properties of amylose". W Handbook of Cereal Science and Technology, Revised and Expanded, 405–32. CRC Press, 2000. http://dx.doi.org/10.1201/9781420027228-41.
Pełny tekst źródłaStreszczenia konferencji na temat "Spherical Population"
Zhong, Lin, Sichen Tao, Qingya Sui, Haichuan Yang, Zhenyu Lei i Shangce Gao. "A Population Resource Allocation-based Adaptive Spherical Search Algorithm". W 2022 IEEE International Conference on Networking, Sensing and Control (ICNSC). IEEE, 2022. http://dx.doi.org/10.1109/icnsc55942.2022.10004116.
Pełny tekst źródłaBaudart, T. "PAL performance analysis for torical prescription". W Vision Science and its Applications. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/vsia.1996.sua.3.
Pełny tekst źródłaSassen, Kenneth. "A Cirrus Cloud Glory". W Light and Color in the Open Air. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/lcoa.1997.lwa.2.
Pełny tekst źródłaKotzalas, Michael N. "Statistical Distribution of Tapered Roller Bearing Fatigue Lives at High Levels of Reliability". W World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63052.
Pełny tekst źródłaLugiato, Luigi A., Lorenzo M. Narducci, Jorge R. Tredicce i Donna K. Bandy. "Effect of a transverse beam profile on the dynamics of a homogeneously broadened ring laser". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.mf8.
Pełny tekst źródłaZheng, Ying, i Wilson S. Meng. "Polycation Coated Polymeric Particles as Vehicles of RNA Delivery Into Immune Cells". W ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3714.
Pełny tekst źródłaStarc, Vito, i Cees A. Swenne. "Spatial Distribution and Orientation of a Single Moving Dipole Computed in 12-Lead ECGs in a Healthy Population Using a Spherically Bounded Model". W 2017 Computing in Cardiology Conference. Computing in Cardiology, 2017. http://dx.doi.org/10.22489/cinc.2017.242-277.
Pełny tekst źródłaRosenthal, S. J., A. T. Yeh, A. P. Alivisatos i C. V. Shank. "Size Dependent Absorption Anisotropy Measurements of CdSe Nanocrystals: Symmetry Assignments for the Lowest Exciton State". W International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.tue.45.
Pełny tekst źródłaMueller, Stephen. "Designing for Irradiated Shade". W 2020 ACSA Fall Conference. ACSA Press, 2020. http://dx.doi.org/10.35483/acsa.aia.fallintercarbon.20.29.
Pełny tekst źródłaTong, F., R. M. Macfarlane i W. Lenth. "Cascade lasing at 730 and 1053 nm in LiYF4:Nd using upconversion pumping". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.tuo3.
Pełny tekst źródłaRaporty organizacyjne na temat "Spherical Population"
Robertson, A., F. Hemez, I. Salazar i T. Duffey. Modal Testing Repeatability of a Population of Spherical Shells. Office of Scientific and Technical Information (OSTI), maj 2004. http://dx.doi.org/10.2172/828954.
Pełny tekst źródła