Gotowa bibliografia na temat „Speech and audio signals”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Speech and audio signals”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Speech and audio signals"
Rao*, G. Manmadha, Raidu Babu D.N, Krishna Kanth P.S.L, Vinay B. i Nikhil V. "Reduction of Impulsive Noise from Speech and Audio Signals by using Sd-Rom Algorithm". International Journal of Recent Technology and Engineering 10, nr 1 (30.05.2021): 265–68. http://dx.doi.org/10.35940/ijrte.a5943.0510121.
Pełny tekst źródłaS. Ashwin, J., i N. Manoharan. "Audio Denoising Based on Short Time Fourier Transform". Indonesian Journal of Electrical Engineering and Computer Science 9, nr 1 (1.01.2018): 89. http://dx.doi.org/10.11591/ijeecs.v9.i1.pp89-92.
Pełny tekst źródłaKacur, Juraj, Boris Puterka, Jarmila Pavlovicova i Milos Oravec. "Frequency, Time, Representation and Modeling Aspects for Major Speech and Audio Processing Applications". Sensors 22, nr 16 (22.08.2022): 6304. http://dx.doi.org/10.3390/s22166304.
Pełny tekst źródłaNittrouer, Susan, i Joanna H. Lowenstein. "Beyond Recognition: Visual Contributions to Verbal Working Memory". Journal of Speech, Language, and Hearing Research 65, nr 1 (12.01.2022): 253–73. http://dx.doi.org/10.1044/2021_jslhr-21-00177.
Pełny tekst źródłaB, Nagesh, i Dr M. Uttara Kumari. "A Review on Machine Learning for Audio Applications". Journal of University of Shanghai for Science and Technology 23, nr 07 (30.06.2021): 62–70. http://dx.doi.org/10.51201/jusst/21/06508.
Pełny tekst źródłaKubanek, M., J. Bobulski i L. Adrjanowicz. "Characteristics of the use of coupled hidden Markov models for audio-visual polish speech recognition". Bulletin of the Polish Academy of Sciences: Technical Sciences 60, nr 2 (1.10.2012): 307–16. http://dx.doi.org/10.2478/v10175-012-0041-6.
Pełny tekst źródłaTimmermann, Johannes, Florian Ernst i Delf Sachau. "Speech enhancement for helicopter headsets with an integrated ANC-system for FPGA-platforms". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 265, nr 5 (1.02.2023): 2720–30. http://dx.doi.org/10.3397/in_2022_0382.
Pełny tekst źródłaAbdallah, Hanaa A., i Souham Meshoul. "A Multilayered Audio Signal Encryption Approach for Secure Voice Communication". Electronics 12, nr 1 (20.12.2022): 2. http://dx.doi.org/10.3390/electronics12010002.
Pełny tekst źródłaYin, Shu Hua. "Design of the Auxiliary Speech Recognition System of Super-Short-Range Reconnaissance Radar". Applied Mechanics and Materials 556-562 (maj 2014): 4830–34. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.4830.
Pełny tekst źródłaMoore, Brian C. J. "Binaural sharing of audio signals". Hearing Journal 60, nr 11 (listopad 2007): 46–48. http://dx.doi.org/10.1097/01.hj.0000299172.13153.6f.
Pełny tekst źródłaRozprawy doktorskie na temat "Speech and audio signals"
Mason, Michael. "Hybrid coding of speech and audio signals". Thesis, Queensland University of Technology, 2001.
Znajdź pełny tekst źródłaTrinkaus, Trevor R. "Perceptual coding of audio and diverse speech signals". Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/13883.
Pełny tekst źródłaMészáros, Tomáš. "Speech Analysis for Processing of Musical Signals". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2015. http://www.nusl.cz/ntk/nusl-234974.
Pełny tekst źródłaChoi, Hyung Keun. "Blind source separation of the audio signals in a real world". Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/14986.
Pełny tekst źródłaLucey, Simon. "Audio-visual speech processing". Thesis, Queensland University of Technology, 2002. https://eprints.qut.edu.au/36172/7/SimonLuceyPhDThesis.pdf.
Pełny tekst źródłaAnderson, David Verl. "Audio signal enhancement using multi-resolution sinusoidal modeling". Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/15394.
Pełny tekst źródłaZeghidour, Neil. "Learning representations of speech from the raw waveform". Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEE004/document.
Pełny tekst źródłaWhile deep neural networks are now used in almost every component of a speech recognition system, from acoustic to language modeling, the input to such systems are still fixed, handcrafted, spectral features such as mel-filterbanks. This contrasts with computer vision, in which a deep neural network is now trained on raw pixels. Mel-filterbanks contain valuable and documented prior knowledge from human auditory perception as well as signal processing, and are the input to state-of-the-art speech recognition systems that are now on par with human performance in certain conditions. However, mel-filterbanks, as any fixed representation, are inherently limited by the fact that they are not fine-tuned for the task at hand. We hypothesize that learning the low-level representation of speech with the rest of the model, rather than using fixed features, could push the state-of-the art even further. We first explore a weakly-supervised setting and show that a single neural network can learn to separate phonetic information and speaker identity from mel-filterbanks or the raw waveform, and that these representations are robust across languages. Moreover, learning from the raw waveform provides significantly better speaker embeddings than learning from mel-filterbanks. These encouraging results lead us to develop a learnable alternative to mel-filterbanks, that can be directly used in replacement of these features. In the second part of this thesis we introduce Time-Domain filterbanks, a lightweight neural network that takes the waveform as input, can be initialized as an approximation of mel-filterbanks, and then learned with the rest of the neural architecture. Across extensive and systematic experiments, we show that Time-Domain filterbanks consistently outperform melfilterbanks and can be integrated into a new state-of-the-art speech recognition system, trained directly from the raw audio signal. Fixed speech features being also used for non-linguistic classification tasks for which they are even less optimal, we perform dysarthria detection from the waveform with Time-Domain filterbanks and show that it significantly improves over mel-filterbanks or low-level descriptors. Finally, we discuss how our contributions fall within a broader shift towards fully learnable audio understanding systems
Bando, Yoshiaki. "Robust Audio Scene Analysis for Rescue Robots". Kyoto University, 2018. http://hdl.handle.net/2433/232410.
Pełny tekst źródłaMoghimi, Amir Reza. "Array-based Spectro-temporal Masking For Automatic Speech Recognition". Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/334.
Pełny tekst źródłaBrangers, Kirstin M. "Perceptual Ruler for Quantifying Speech Intelligibility in Cocktail Party Scenarios". UKnowledge, 2013. http://uknowledge.uky.edu/ece_etds/31.
Pełny tekst źródłaKsiążki na temat "Speech and audio signals"
Gold, Ben, Nelson Morgan i Dan Ellis. Speech and Audio Signal Processing. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118142882.
Pełny tekst źródłaDeller, John R. Discrete-time processing of speech signals. New York: Institute of Electrical and Electronics Engineers, 2000.
Znajdź pełny tekst źródłaG, Proakis John, i Hansen John H. L, red. Discrete-time processing of speech signals. New York: Macmillan Pub. Co., 1993.
Znajdź pełny tekst źródłaV, Madisetti, red. Video, speech, and audio signal processing and associated standards. Boca Raton, FL: CRC Press, 2009.
Znajdź pełny tekst źródłaV, Madisetti, red. Video, speech, and audio signal processing and associated standards. Boca Raton, FL: CRC Press, 2009.
Znajdź pełny tekst źródłaGold, Bernard. Speech and audio signal processing: Processing and perception of speech and music. Wyd. 2. Hoboken, N.J: Wiley, 2011.
Znajdź pełny tekst źródłaNelson, Morgan, red. Speech and audio signal processing: Processing and perception of speech and music. New York: John Wiley, 2000.
Znajdź pełny tekst źródłaMadisetti, V. Video, speech, and audio signal processing and associated standards. Wyd. 2. Boca Raton, FL: CRC Press, 2010.
Znajdź pełny tekst źródłaMadisetti, V. Video, speech, and audio signal processing and associated standards. Wyd. 2. Boca Raton, FL: CRC Press, 2010.
Znajdź pełny tekst źródłaS, Atal Bishnu, Cuperman Vladimir i Gersho Allen, red. Speech and audio coding for wireless and network applications. Boston: Kluwer Academic Publishers, 1993.
Znajdź pełny tekst źródłaCzęści książek na temat "Speech and audio signals"
Buchanan, William J. "Speech and Audio Signals". W Advanced Data Communications and Networks, 111–27. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4419-8670-2_8.
Pełny tekst źródłaBuchanan, Bill. "Speech and Audio Signals". W Handbook of Data Communications and Networks, 96–109. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-0905-6_9.
Pełny tekst źródłaBuchanan, W. J. "Speech and Audio Signals". W The Handbook of Data Communications and Networks, 359–72. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4020-7870-5_19.
Pełny tekst źródłaBuchanan, W. "Speech and Audio Signals". W Advanced Data Communications and Networks, 111–27. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003420415-8.
Pełny tekst źródłaRichter, Michael M., Sheuli Paul, Veton Këpuska i Marius Silaghi. "Audio Signals and Speech Recognition". W Signal Processing and Machine Learning with Applications, 345–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-45372-9_18.
Pełny tekst źródłaBuchner, Herbert, i Walter Kellermann. "TRINICON for Dereverberation of Speech and Audio Signals". W Speech Dereverberation, 311–85. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-056-4_10.
Pełny tekst źródłaDouglas, Scott C., i Malay Gupta. "Convolutive Blind Source Separation for Audio Signals". W Blind Speech Separation, 3–45. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6479-1_1.
Pełny tekst źródłaHerre, Jürgen, i Manfred Lutzky. "Perceptual Audio Coding of Speech Signals". W Springer Handbook of Speech Processing, 393–410. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-49127-9_18.
Pełny tekst źródłaKellermann, Walter. "Beamforming for Speech and Audio Signals". W Handbook of Signal Processing in Acoustics, 691–702. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-30441-0_35.
Pełny tekst źródłaShamsi, Meysam, Nelly Barbot, Damien Lolive i Jonathan Chevelu. "Mixing Synthetic and Recorded Signals for Audio-Book Generation". W Speech and Computer, 479–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60276-5_46.
Pełny tekst źródłaStreszczenia konferencji na temat "Speech and audio signals"
Shriver, Stefanie, Alan W. Black i Ronald Rosenfeld. "Audio signals in speech interfaces". W 6th International Conference on Spoken Language Processing (ICSLP 2000). ISCA: ISCA, 2000. http://dx.doi.org/10.21437/icslp.2000-35.
Pełny tekst źródła"Signal Processing. Speech and Audio Processing". W 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2022. http://dx.doi.org/10.1109/iwssip55020.2022.9854416.
Pełny tekst źródłaPhan, Huy, Lars Hertel, Marco Maass, Radoslaw Mazur i Alfred Mertins. "Representing nonspeech audio signals through speech classification models". W Interspeech 2015. ISCA: ISCA, 2015. http://dx.doi.org/10.21437/interspeech.2015-682.
Pełny tekst źródłaKammerl, Julius, Neil Birkbeck, Sasi Inguva, Damien Kelly, A. J. Crawford, Hugh Denman, Anil Kokaram i Caroline Pantofaru. "Temporal synchronization of multiple audio signals". W ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014. http://dx.doi.org/10.1109/icassp.2014.6854474.
Pełny tekst źródła"Main Track: Speech and Audio Processing". W 2020 International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2020. http://dx.doi.org/10.1109/iwssip48289.2020.9145083.
Pełny tekst źródłaMovassagh, Mahmood, Joachim Thiemann i Peter Kabal. "Joint entropy-scalable coding of audio signals". W ICASSP 2012 - 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2012. http://dx.doi.org/10.1109/icassp.2012.6288537.
Pełny tekst źródłavan der Waal, R. G., i R. N. J. Veldhuis. "Subband coding of stereophonic digital audio signals". W [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing. IEEE, 1991. http://dx.doi.org/10.1109/icassp.1991.151053.
Pełny tekst źródłaRajagopalan, R., i B. Subramanian. "Removal of impulse noise from audio and speech signals". W International Symposium on Signals, Circuits and Systems, 2003. SCS 2003. IEEE, 2003. http://dx.doi.org/10.1109/scs.2003.1226973.
Pełny tekst źródłaZiolko, Mariusz, Bartosz Ziolko i Rafal Samborski. "Dual-Microphone Speech Extraction from Signals with Audio Background". W 2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP). IEEE, 2009. http://dx.doi.org/10.1109/iih-msp.2009.34.
Pełny tekst źródłaBraun, Jerome J., i Haim Levkowitz. "Internet-oriented visualization with audio presentation of speech signals". W Photonics West '98 Electronic Imaging, redaktorzy Robert F. Erbacher i Alex Pang. SPIE, 1998. http://dx.doi.org/10.1117/12.309555.
Pełny tekst źródłaRaporty organizacyjne na temat "Speech and audio signals"
DeLeon, Phillip L. Techniques for Preprocessing Speech Signals for More Effective Audio Interfaces. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2001. http://dx.doi.org/10.21236/ada412195.
Pełny tekst źródłaMammone, Richard J., Khaled Assaleh, Kevin Farrell, Ravi Ramachandran i Mihailo Zilovic. A Modulation Model for Characterizing Speech Signals. Fort Belvoir, VA: Defense Technical Information Center, marzec 1996. http://dx.doi.org/10.21236/ada311661.
Pełny tekst źródłaSpittka, J., i K. Vos. RTP Payload Format for the Opus Speech and Audio Codec. RFC Editor, czerwiec 2015. http://dx.doi.org/10.17487/rfc7587.
Pełny tekst źródłaHerrnstein, A. Start/End Delays of Voiced and Unvoiced Speech Signals. Office of Scientific and Technical Information (OSTI), wrzesień 1999. http://dx.doi.org/10.2172/15006006.
Pełny tekst źródłaChan, A. D., K. Englehart, B. Hudgins i D. F. Lovely. Hidden Markov Model Classification of Myoelectric Signals in Speech. Fort Belvoir, VA: Defense Technical Information Center, październik 2001. http://dx.doi.org/10.21236/ada410037.
Pełny tekst źródłaSTANDARD OBJECT SYSTEMS INC. Advanced Audio Interface for Phonetic Speech Recognition in a High Noise Environment. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2000. http://dx.doi.org/10.21236/ada373461.
Pełny tekst źródłaNelson, W. T., Robert S. Bolia, Mark A. Ericson i Richard L. McKinley. Spatial Audio Displays for Speech Communications: A Comparison of Free Field and Virtual Acoustic Environments. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1999. http://dx.doi.org/10.21236/ada430289.
Pełny tekst źródłaNelson, W. T., Robert S. Bolia, Mark A. Ericson i Richard L. McKinley. Monitoring the Simultaneous Presentation of Spatialized Speech Signals in a Virtual Acoustic Environment. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1998. http://dx.doi.org/10.21236/ada430284.
Pełny tekst źródłaNelson, W. T., Robert S. Bolia, Mark A. Ericson i Richard L. McKinley. Monitoring the Simultaneous Presentation of Multiple Spatialized Speech Signals in the Free Field. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1998. http://dx.doi.org/10.21236/ada430298.
Pełny tekst źródłaHamlin, Alexandra, Erik Kobylarz, James Lever, Susan Taylor i Laura Ray. Assessing the feasibility of detecting epileptic seizures using non-cerebral sensor. Engineer Research and Development Center (U.S.), grudzień 2021. http://dx.doi.org/10.21079/11681/42562.
Pełny tekst źródła