Gotowa bibliografia na temat „Spectral mixtures”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Spectral mixtures”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Spectral mixtures"
Lo, Su-Chin, i Chris W. Brown. "Infrared Spectral Search for Mixtures in Medium-Size Libraries". Applied Spectroscopy 45, nr 10 (grudzień 1991): 1621–27. http://dx.doi.org/10.1366/0003702914335256.
Pełny tekst źródłaDucasse, Etienne, Karine Adeline, Xavier Briottet, Audrey Hohmann, Anne Bourguignon i Gilles Grandjean. "Montmorillonite Estimation in Clay–Quartz–Calcite Samples from Laboratory SWIR Imaging Spectroscopy: A Comparative Study of Spectral Preprocessings and Unmixing Methods". Remote Sensing 12, nr 11 (27.05.2020): 1723. http://dx.doi.org/10.3390/rs12111723.
Pełny tekst źródłaBrown, Chris W., Anne E. Okafor, Steven M. Donahue i Su-Chin Lo. "UV-Visible Spectral Library Search with Mixtures". Applied Spectroscopy 49, nr 7 (lipiec 1995): 1022–27. http://dx.doi.org/10.1366/0003702953964723.
Pełny tekst źródłaMagazù, S., E. Calabrò i M. T. Caccamo. "Experimental Study of Thermal Restraint in Bio-Protectant Disaccharides by FTIR Spectroscopy". Open Biotechnology Journal 12, nr 1 (31.07.2018): 123–33. http://dx.doi.org/10.2174/1874070701812010123.
Pełny tekst źródłaAnastasiadis, Johannes, i Michael Heizmann. "GAN-regularized augmentation strategy for spectral datasets". tm - Technisches Messen 89, nr 4 (5.02.2022): 278–88. http://dx.doi.org/10.1515/teme-2021-0109.
Pełny tekst źródłaGolyak, I. S., E. R. Kareva, I. L. Fufurin, D. R. Anfimov, A. V. Scherbakova, A. O. Nebritova, P. P. Demkin i A. N. Morozov. "Numerical methods of spectral analysis of multicomponent gas mixtures and human exhaled breath". Computer Optics 46, nr 4 (sierpień 2022): 650–58. http://dx.doi.org/10.18287/2412-6179-co-1058.
Pełny tekst źródłaLo, Su-Chin, i Chris W. Brown. "Infrared Spectral Search for Mixtures in Large-Size Libraries". Applied Spectroscopy 45, nr 10 (grudzień 1991): 1628–32. http://dx.doi.org/10.1366/0003702914335111.
Pełny tekst źródłaNyden, Marc R., i Krishnan Chittur. "Component Spectrum Reconstruction from Partially Characterized Mixtures". Applied Spectroscopy 43, nr 1 (styczeń 1989): 123–28. http://dx.doi.org/10.1366/0003702894201743.
Pełny tekst źródłaCiarniello, Mauro, Lyuba V. Moroz, Olivier Poch, Vassilissa Vinogradoff, Pierre Beck, Batiste Rousseau, Istiqomah Istiqomah i in. "VIS-IR Spectroscopy of Mixtures of Water Ice, Organic Matter, and Opaque Mineral in Support of Small Body Remote Sensing Observations". Minerals 11, nr 11 (3.11.2021): 1222. http://dx.doi.org/10.3390/min11111222.
Pełny tekst źródłaKulko, Roman-David, Alexander Pletl, Andreas Hanus i Benedikt Elser. "Detection of Plastic Granules and Their Mixtures". Sensors 23, nr 7 (24.03.2023): 3441. http://dx.doi.org/10.3390/s23073441.
Pełny tekst źródłaRozprawy doktorskie na temat "Spectral mixtures"
Ajohani, Maha. "SPECTRAL PHASOR ANALYSIS ON ABSORBANCE SPECTRA FOR QUANTIFYING THE CONTENT OF DYE MIXTURES". Miami University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=miami1464191406.
Pełny tekst źródłaVlack, Yvette A. "A Diffuse Spectral Reflectance Library of Clay Minerals and Clay Mixtures within the VIS/NIR Bands". Kent State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=kent1227006436.
Pełny tekst źródłaLuo, Zhaohui. "GC/FT-ICR Mass Spectral Analysis of Complex Mixtures: A Multidimensional Approach for Online Gas Phase Basicity Measurements". Fogler Library, University of Maine, 2006. http://www.library.umaine.edu/theses/pdf/LuoZX2006.pdf.
Pełny tekst źródłaRaksuntorn, Nareenart. "Unsupervised spectral mixture analysis for hyperspectral imagery". Diss., Mississippi State : Mississippi State University, 2009. http://library.msstate.edu/etd/show.asp?etd=etd-04192009-142516.
Pełny tekst źródłaLevi, Di Leon Rémi. "Etude théorique et expérimentale de l'absorption par CO2 et H2O dans le domaine infrarouge à température élevée". Châtenay-Malabry, Ecole centrale de Paris, 1986. http://www.theses.fr/1986ECAP0026.
Pełny tekst źródłaParra, Vásquez Gabriel Enrique. "Spectral mixture kernels for Multi-Output Gaussian processes". Tesis, Universidad de Chile, 2017. http://repositorio.uchile.cl/handle/2250/150553.
Pełny tekst źródłaMulti-Output Gaussian Processes (MOGPs) are the multivariate extension of Gaussian processes (GPs \cite{Rasmussen:2006}), a Bayesian nonparametric method for univariate regression. MOGPs address the multi-channel regression problem by modeling the correlation in time and/or space (as scalar GPs do), but also across channels and thus revealing statistical dependencies among different sources of data. This is crucial in a number of real-world applications such as fault detection, data imputation and financial time-series analysis. Analogously to the univariate case, MOGPs are entirely determined by a multivariate covariance function, which in this case is matrix valued. The design of this matrix-valued covariance function is challenging, since we have to deal with the trade off between (i) choosing a broad class of cross-covariances and auto-covariances, while at the same time (ii) ensuring positive definiteness of the symmetric matrix containing these scalar-valued covariance functions. In the stationary univariate case, these difficulties can be bypassed by virtue of Bochner's theorem, that is, by building the covariance function in the spectral (Fourier) domain to then transform it to the time and/or space domain, thus yielding the (single-output) Spectral Mixture kernel \cite{Wilson:2013}. A classical approach to define multivariate covariance functions for MOGPs is through linear combinations of independent (latent) GPs; this is the case of the Linear Model of Coregionalization (LMC \cite{goo1997}) and the Convolution Model \cite{Alvarez:2008}. In these cases, the resulting multivariate covariance function is a function of both the latent-GP covariances and the linear operator considered, which usually results in symmetric cross-covariances that do not admit lags across channels. Due to their simplicity, these approaches fail to provide interpretability of the dependencies learnt and force the auto-covariances to have similar structure. The main purpose of this work is to extend the spectral mixture concept to MOGPs: We rely on Cram\'er's theorem \cite, the multivariate version of Bochner's theorem, to propose an expressive family of complex-valued square-exponential cross-spectral densities, which, through the Fourier transform yields the Multi-Output Spectral Mixture kernel (MOSM). The proposed MOSM model provides clear interpretation of all the parameters in spectral terms. Besides the theoretical presentation and interpretation of the proposed multi-output covariance kernel based on square-exponential spectral densities, we inquiry the plausibility of complex-valued t-Student cross-spectral densities. We validate our contribution experimentally through an illustrative example using a tri-variate synthetic signal, and then compare it against all the aforementioned methods on two real-world datasets.
Stuttle, Matthew Nicholas. "A gaussian mixture model spectral representation for speech recognition". Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620077.
Pełny tekst źródłaRaman, Pujita. "Speaker Identification and Verification Using Line Spectral Frequencies". Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/52964.
Pełny tekst źródłaMaster of Science
Gurden, Stephen P. "Deconvolution of vapour-phase mid-infrared mixture spectra of organic solvents using chemometrics". Thesis, University of Bristol, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337176.
Pełny tekst źródłaKressler, Florian. "The Integration of Remote Sensing and Ancillary Data". WU Vienna University of Economics and Business, 1996. http://epub.wu.ac.at/4256/1/WSG_RR_0896.pdf.
Pełny tekst źródłaSeries: Research Reports of the Institute for Economic Geography and GIScience
Książki na temat "Spectral mixtures"
Hawaii Institute of Geophysics. Planetary Geosciences Division. i United States. National Aeronautics and Space Administration., red. Spectral reflectance (0.4 - 5.0 [microns]) of sulfur related compounds and mixtures. Honolulu, Hawaii: Planetary Geosciences Division, Hawaii Institute of Geophysics, University of Hawaii, 1987.
Znajdź pełny tekst źródłaHawaii Institute of Geophysics. Planetary Geosciences Division. i United States. National Aeronautics and Space Administration., red. Spectral reflectance (0.4 - 5.0 [microns]) of sulfur related compounds and mixtures. Honolulu, Hawaii: Planetary Geosciences Division, Hawaii Institute of Geophysics, University of Hawaii, 1987.
Znajdź pełny tekst źródłaShimabukuro, Yosio Edemir, i Flávio Jorge Ponzoni. Spectral Mixture for Remote Sensing. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02017-0.
Pełny tekst źródłaLin, Li, He Guoqi i United States. National Aeronautics and Space Administration., red. Nonlinear spectral mixture modeling of lunar multispectral: Implications for lateral transport. [Washington, DC: National Aeronautics and Space Administration, 1997.
Znajdź pełny tekst źródłaWehrmeyer, Joseph A. Temperature and mixture fraction profiles in counterflow diffusion flames using linewise Raman imaging. Washington, D. C: AIAA, 1995.
Znajdź pełny tekst źródłaSo odd a mixture: Along the autistic spectrum in Pride and prejudice. London: Jessica Kingsley Publishers, 2007.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. NONLINEAR SPECTRAL MIXTURE MODELING OF LUNAR MULTISPECTRAL: IMPLICATIONS FOR LATERAL TRANSPORT... NASA/CR-1998-208863... SEP. 10, 1999. [S.l: s.n., 2000.
Znajdź pełny tekst źródłaRuckebusch, Cyril. Resolving Spectral Mixtures: With Applications from Ultrafast Time-Resolved Spectroscopy to Superresolution Imaging. Elsevier Science & Technology Books, 2016.
Znajdź pełny tekst źródłaRuckebusch, Cyril. Resolving Spectral Mixtures: With Applications from Ultrafast Time-Resolved Spectroscopy to Super-Resolution Imaging. Elsevier, 2016.
Znajdź pełny tekst źródłaResolving Spectral Mixtures - With Applications from Ultrafast Time-Resolved Spectroscopy to Super-Resolution Imaging. Elsevier, 2016. http://dx.doi.org/10.1016/c2015-0-00401-4.
Pełny tekst źródłaCzęści książek na temat "Spectral mixtures"
Achlioptas, Dimitris, i Frank McSherry. "On Spectral Learning of Mixtures of Distributions". W Learning Theory, 458–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11503415_31.
Pełny tekst źródłaLuo, Bin, i Sibao Chen. "LPP and LPP Mixtures for Graph Spectral Clustering". W Advances in Image and Video Technology, 118–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11949534_12.
Pełny tekst źródłaBarteneva, Natasha S., Aigul Kussanova, Veronika Dashkova, Ayagoz Meirkhanova i Ivan A. Vorobjev. "Using Virtual Filtering Approach to Discriminate Microalgae by Spectral Flow Cytometer". W Methods in Molecular Biology, 23–40. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3020-4_2.
Pełny tekst źródłaSaylani, Hicham, Shahram Hosseini i Yannick Deville. "Blind Separation of Noisy Mixtures of Non-stationary Sources Using Spectral Decorrelation". W Independent Component Analysis and Signal Separation, 322–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00599-2_41.
Pełny tekst źródłaMei, Tiemin, Jiangtao Xi, Fuliang Yin i Joe F. Chicharo. "Joint Diagonalization of Power Spectral Density Matrices for Blind Source Separation of Convolutive Mixtures". W Advances in Neural Networks – ISNN 2005, 520–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11427445_85.
Pełny tekst źródłaAlekhin, A. D., S. G. Ostapchenko, D. B. Svydka i D. I. Malyarenko. "Spectral Kinetic and Correlation Characteristics of Inhomogeneous Mixtures in the Vicinity of the Critical Point of Stratification". W Light Scattering and Photon Correlation Spectroscopy, 441–60. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5586-1_37.
Pełny tekst źródłaChang, Chein-I. "Linear Spectral Mixture Analysis". W Real-Time Progressive Hyperspectral Image Processing, 37–73. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4419-6187-7_2.
Pełny tekst źródłaHannah, Robert W. "Infrared Spectra of Mixtures". W Course Notes on the Interpretation of Infrared and Raman Spectra, 461–504. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/0471690082.ch14.
Pełny tekst źródłaShimabukuro, Yosio Edemir, i Flávio Jorge Ponzoni. "The Linear Spectral Mixture Model". W Springer Remote Sensing/Photogrammetry, 23–41. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02017-0_4.
Pełny tekst źródłaHutchins, Tiffany, Giacomo Vivanti, Natasa Mateljevic, Roger J. Jou, Frederick Shic, Lauren Cornew, Timothy P. L. Roberts i in. "Mixture Modeling". W Encyclopedia of Autism Spectrum Disorders, 1887. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1698-3_100887.
Pełny tekst źródłaStreszczenia konferencji na temat "Spectral mixtures"
Verzhbitskiy, I. A., M. Chrysos, A. P. Kouzov, F. Rachet, John Lewis i Adriana Predoi-Cross. "Double Raman Scattering In Gas Mixtures". W 20TH INTERNATIONAL CONFERENCE ON SPECTRAL LINE SHAPES. AIP, 2010. http://dx.doi.org/10.1063/1.3517542.
Pełny tekst źródłaMakarewicz, Joseph S., i Heather D. Makarewicz. "Spectral mixture decomposition using principal component analysis applied to pyroxene mixtures". W 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, 2013. http://dx.doi.org/10.1109/whispers.2013.8080604.
Pełny tekst źródłaBorysow, Aleksandra, Lothar Frommhold i Wilfried Meyer. "The collision induced rotovibrational absorption bands of hydrogen and hydrogen-helium mixtures-new results". W Spectral line shapes. AIP, 1990. http://dx.doi.org/10.1063/1.39899.
Pełny tekst źródłaWeiss, Shmuel. "Simulation of the collision-induced absorption spectrum of gaseous rare gas mixtures including ternary contributions". W Spectral line shapes. AIP, 1990. http://dx.doi.org/10.1063/1.39970.
Pełny tekst źródłaSolovjov, Vladimir P., Denis Lemonnier i Brent W. Webb. "SLW-1 Modeling of Radiative Heat Transfer in Non-Isothermal Non-Homogeneous Gas Mixtures With Soot". W 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22299.
Pełny tekst źródłaSubakan, Yusuf Cem, O. Celiktutan, A. T. Cemgil i B. Sankur. "Spectral learning of mixtures of Hidden Markov Models". W 2013 21st Signal Processing and Communications Applications Conference (SIU). IEEE, 2013. http://dx.doi.org/10.1109/siu.2013.6531340.
Pełny tekst źródłaHonciuc, Maria, Eugenia G. Carbunescu, Carmen Popa, Elena Slavnicu i Iulian Badragan. "Spectral study of some fatty acid-cholesterol mixtures". W SIOEL: Sixth Symposium of Optoelectronics, redaktorzy Teodor Necsoiu, Maria Robu i Dan C. Dumitras. SPIE, 2000. http://dx.doi.org/10.1117/12.378644.
Pełny tekst źródłaField, Paul E., i Roger J. Combs. "Infrared spectral evaluation of methanol/ammonia vapor mixtures". W Optics East, redaktorzy Arthur J. Sedlacek III, Steven D. Christesen, Tuan Vo-Dinh i Roger J. Combs. SPIE, 2004. http://dx.doi.org/10.1117/12.565164.
Pełny tekst źródłaKryukov, N. A., P. A. Saveliev i M. A. Tchaplyguine. "Radiation spectroscopy of heavy rare-gas excimers and their mixtures". W The 13th international conference on spectral line shapes. AIP, 1997. http://dx.doi.org/10.1063/1.51853.
Pełny tekst źródłaMehrubeoglu, M., P. V. Zimba, L. L. McLauchlan i M. Y. Teng. "Spectral unmixing of three-algae mixtures using hyperspectral images". W 2013 IEEE Sensors Applications Symposium (SAS). IEEE, 2013. http://dx.doi.org/10.1109/sas.2013.6493565.
Pełny tekst źródłaRaporty organizacyjne na temat "Spectral mixtures"
Pokrzywinski, Kaytee, Cliff Morgan, Scott Bourne, Molly Reif, Kenneth Matheson i Shea Hammond. A novel laboratory method for the detection and identification of cyanobacteria using hyperspectral imaging : hyperspectral imaging for cyanobacteria detection. Engineer Research and Development Center (U.S.), czerwiec 2021. http://dx.doi.org/10.21079/11681/40966.
Pełny tekst źródłaIrizarry, Alfredo V. The Spectral Mixture Models: A Minimum Information Divergence Approach. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2010. http://dx.doi.org/10.21236/ada519885.
Pełny tekst źródłaDwyer, Roger F. Fourth-Order Spectra of Mixture and Modulated Processes. Fort Belvoir, VA: Defense Technical Information Center, październik 1988. http://dx.doi.org/10.21236/ada203398.
Pełny tekst źródłaSchlack, Trevor, Samuel Beal, Elizabeth Corriveau i Jay Clausen. Detection limits of trinitrotoluene and ammonium nitrate in soil by Raman spectroscopy. Engineer Research and Development Center (U.S.), luty 2022. http://dx.doi.org/10.21079/11681/43302.
Pełny tekst źródłaWoods, K. N., i H. Wiedemann. The Influence of Chain Dynamics on the Far Infrared Spectrum of Liquid Methanol-Water Mixtures. Office of Scientific and Technical Information (OSTI), lipiec 2005. http://dx.doi.org/10.2172/878842.
Pełny tekst źródłaDawn, William C. An Analytic Benchmark for the Solution to the Isotopic Fission Spectrum Mixture Problem. Office of Scientific and Technical Information (OSTI), styczeń 2020. http://dx.doi.org/10.2172/1593873.
Pełny tekst źródłaGriem, H. Experimental study of population inversion and spectral line broadening in a plasma containing a mixture of high Z and low Z ions. Office of Scientific and Technical Information (OSTI), październik 1988. http://dx.doi.org/10.2172/7264387.
Pełny tekst źródłaAsenath-Smith, Emily, Emma Ambrogi, Eftihia Barnes i Jonathon Brame. CuO enhances the photocatalytic activity of Fe₂O₃ through synergistic reactive oxygen species interactions. Engineer Research and Development Center (U.S.), wrzesień 2021. http://dx.doi.org/10.21079/11681/42131.
Pełny tekst źródłaPaesani, Francesco, i Wei Xiong. Probing the Structure and Dynamics of Fluid Mixtures in Porous Materials Through Ultrafast Vibrational Spectro-Microscopy and Many-Body Molecular Dynamics. Office of Scientific and Technical Information (OSTI), grudzień 2022. http://dx.doi.org/10.2172/1901582.
Pełny tekst źródła