Artykuły w czasopismach na temat „Spatial ecology”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Spatial ecology.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Spatial ecology”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Ettema, C. "Spatial soil ecology". Trends in Ecology & Evolution 17, nr 4 (1.04.2002): 177–83. http://dx.doi.org/10.1016/s0169-5347(02)02496-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Hildrew, A. G. "Whole river ecology: spatial scale and heterogeneity in the ecology of running waters". River Systems 10, nr 1-4 (18.09.1996): 25–43. http://dx.doi.org/10.1127/lr/10/1996/25.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

SLADE, PAUL F. "SOME INEQUALITIES FOR THEORETICAL SPATIAL ECOLOGY". ANZIAM Journal 55, nr 1 (lipiec 2013): 55–68. http://dx.doi.org/10.1017/s1446181113000266.

Pełny tekst źródła
Streszczenie:
AbstractInequalities for spatial competition verify the pair approximation of statistical mechanics introduced to theoretical ecology by Matsuda, Satō and Iwasa, among others. Spatially continuous moment equations were introduced by Bolker and Pacala and use a similar assumption in derivation. In the present article, I prove upper bounds for the$k\mathrm{th} $central moment of occupied sites in the contact process of a single spatial dimension. This result shows why such moment closures are effective in spatial ecology.
Style APA, Harvard, Vancouver, ISO itp.
4

Wiens, J. A. "Spatial Scaling in Ecology". Functional Ecology 3, nr 4 (1989): 385. http://dx.doi.org/10.2307/2389612.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Horne, John K., i David C. Schneider. "Spatial Variance in Ecology". Oikos 74, nr 1 (październik 1995): 18. http://dx.doi.org/10.2307/3545670.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Hastings, Alan, Sergei Petrovskii i Andrew Morozov. "Spatial ecology across scales". Biology Letters 7, nr 2 (10.11.2010): 163–65. http://dx.doi.org/10.1098/rsbl.2010.0948.

Pełny tekst źródła
Streszczenie:
The international conference ‘Models in population dynamics and ecology 2010: animal movement, dispersal and spatial ecology’ took place at the University of Leicester, UK, on 1–3 September 2010, focusing on mathematical approaches to spatial population dynamics and emphasizing cross-scale issues. Exciting new developments in scaling up from individual level movement to descriptions of this movement at the macroscopic level highlighted the importance of mechanistic approaches, with different descriptions at the microscopic level leading to different ecological outcomes. At higher levels of organization, different macroscopic descriptions of movement also led to different properties at the ecosystem and larger scales. New developments from Levy flight descriptions to the incorporation of new methods from physics and elsewhere are revitalizing research in spatial ecology, which will both increase understanding of fundamental ecological processes and lead to tools for better management.
Style APA, Harvard, Vancouver, ISO itp.
7

O'Connell, Mark. "Spatial ecology and conservation". Ecological Informatics 14 (marzec 2013): 1. http://dx.doi.org/10.1016/j.ecoinf.2013.01.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Weiner, Benjamin G., Anna Posfai i Ned S. Wingreen. "Spatial ecology of territorial populations". Proceedings of the National Academy of Sciences 116, nr 36 (21.08.2019): 17874–79. http://dx.doi.org/10.1073/pnas.1911570116.

Pełny tekst źródła
Streszczenie:
Many ecosystems, from vegetation to biofilms, are composed of territorial populations that compete for both nutrients and physical space. What are the implications of such spatial organization for biodiversity? To address this question, we developed and analyzed a model of territorial resource competition. In the model, all species obey trade-offs inspired by biophysical constraints on metabolism; the species occupy nonoverlapping territories, while nutrients diffuse in space. We find that the nutrient diffusion time is an important control parameter for both biodiversity and the timescale of population dynamics. Interestingly, fast nutrient diffusion allows the populations of some species to fluctuate to zero, leading to extinctions. Moreover, territorial competition spontaneously gives rise to both multistability and the Allee effect (in which a minimum population is required for survival), so that small perturbations can have major ecological effects. While the assumption of trade-offs allows for the coexistence of more species than the number of nutrients—thus violating the principle of competitive exclusion—overall biodiversity is curbed by the domination of “oligotroph” species. Importantly, in contrast to well-mixed models, spatial structure renders diversity robust to inequalities in metabolic trade-offs. Our results suggest that territorial ecosystems can display high biodiversity and rich dynamics simply due to competition for resources in a spatial community.
Style APA, Harvard, Vancouver, ISO itp.
9

Pontius, Anneliese A. "Spatial Representation, Modified by Ecology". Journal of Cross-Cultural Psychology 24, nr 4 (grudzień 1993): 399–413. http://dx.doi.org/10.1177/0022022193244002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Daly, Martin. "Spatial Ecology of Desert Rodents". Ethology 107, nr 7 (24.07.2001): 666. http://dx.doi.org/10.1046/j.1439-0310.2001.0686b.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Collinge, Sharon K. "Spatial ecology and biological conservation". Biological Conservation 100, nr 1 (lipiec 2001): 1–2. http://dx.doi.org/10.1016/s0006-3207(00)00201-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Stein, Alfred, i Jan Goudriaan. "Spatial statistics for production ecology". Agriculture, Ecosystems & Environment 81, nr 1 (październik 2000): 1–3. http://dx.doi.org/10.1016/s0167-8809(00)00163-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Fortin, Marie-Josée, Patrick M. A. James, Alistair MacKenzie, Stephanie J. Melles i Bronwyn Rayfield. "Spatial statistics, spatial regression, and graph theory in ecology". Spatial Statistics 1 (maj 2012): 100–109. http://dx.doi.org/10.1016/j.spasta.2012.02.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Liu, Yupeng, Wei-Qiang Chen, Tao Lin i Lijie Gao. "How Spatial Analysis Can Help Enhance Material Stocks and Flows Analysis?" Resources 8, nr 1 (4.03.2019): 46. http://dx.doi.org/10.3390/resources8010046.

Pełny tekst źródła
Streszczenie:
Spatial information can be integrated into almost all fields of industrial ecology. Many researchers have shown that spatial proximity affects a variety of behaviors and interactions, and thus matters for materials stocks and flows analysis. However, normal tools or models in industrial ecology based on temporal dependence cannot be simply applied to the case of spatial dependence. This paper proposes a framework integrating material stocks and flows analysis with spatial analysis. We argue that spatial analysis can help data management and visualization, determine spatio-temporal patterns-processes-drivers, and finally develop dynamic and spatially explicit models, to improve the performance of simulating and assessing stocks and flows of materials. Scaling in spatial, temporal, and organizational dimensions and other current limitations are also discussed. Combined with spatial analysis, industrial ecology can really be more powerful in achieving its origin and destination—sustainability.
Style APA, Harvard, Vancouver, ISO itp.
15

Griffith, Daniel A., i Pedro R. Peres-Neto. "SPATIAL MODELING IN ECOLOGY: THE FLEXIBILITY OF EIGENFUNCTION SPATIAL ANALYSES". Ecology 87, nr 10 (październik 2006): 2603–13. http://dx.doi.org/10.1890/0012-9658(2006)87[2603:smietf]2.0.co;2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Slade, Paul. "Some inequalities for theoretical spatial ecology". ANZIAM Journal 54 (3.04.2014): 55. http://dx.doi.org/10.21914/anziamj.v55i0.6680.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

West, Neil. "Spatial Pattern Analysis in Plant Ecology." Crop Science 41, nr 3 (maj 2001): 916. http://dx.doi.org/10.2135/cropsci2001.413916x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

WILES, LORI J. "Spatial Pattern Analysis in Plant Ecology". Weed Technology 15, nr 1 (styczeń 2001): 195–96. http://dx.doi.org/10.1614/0890-037x(2001)015[0195:]2.0.co;2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Dawson, Terence, i C. A. Johnston. "A Computerized Approach to Spatial Ecology". Global Ecology and Biogeography Letters 7, nr 4 (lipiec 1998): 307. http://dx.doi.org/10.2307/2997610.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

McCulloch, C. E. "Quantitative Ecology: Spatial and Temporal Scaling". Journal of Environmental Quality 24, nr 2 (marzec 1995): 384. http://dx.doi.org/10.2134/jeq1995.00472425002400020026x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Moilanen, Atte, i Marko Nieminen. "SIMPLE CONNECTIVITY MEASURES IN SPATIAL ECOLOGY". Ecology 83, nr 4 (kwiecień 2002): 1131–45. http://dx.doi.org/10.1890/0012-9658(2002)083[1131:scmise]2.0.co;2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Lion, Sébastien, i Minus van Baalen. "Self-structuring in spatial evolutionary ecology". Ecology Letters 11, nr 3 (marzec 2008): 277–95. http://dx.doi.org/10.1111/j.1461-0248.2007.01132.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Slingsby, Dr David. "Spatial Pattern Analysis in Plant Ecology". Biological Conservation 97, nr 1 (styczeń 2001): 127–28. http://dx.doi.org/10.1016/s0006-3207(00)00095-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Lion, Sébastien. "Moment equations in spatial evolutionary ecology". Journal of Theoretical Biology 405 (wrzesień 2016): 46–57. http://dx.doi.org/10.1016/j.jtbi.2015.10.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Mendonça, Milton de Souza. "Spatial ecology goes to space: Metabiospheres". Icarus 233 (maj 2014): 348–51. http://dx.doi.org/10.1016/j.icarus.2014.01.027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Jørgensen, Sven Erik. "Quantitative ecology. Spatial and temporal scaling". Ecological Modelling 79, nr 1-3 (maj 1995): 288. http://dx.doi.org/10.1016/0304-3800(95)90066-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Buettel, Jessie C., Andrew Cole, John M. Dickey i Barry W. Brook. "Analyzing linear spatial features in ecology". Ecology 99, nr 6 (16.05.2018): 1490–97. http://dx.doi.org/10.1002/ecy.2215.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Li, Harbin, Raija Laiho i Dan Binkley. "Spatial Pattern Analysis in Plant Ecology". Forest Science 47, nr 1 (1.02.2001): 119–21. http://dx.doi.org/10.1093/forestscience/47.1.119.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Erős, Tibor, i Winsor H. Lowe. "The Landscape Ecology of Rivers: from Patch-Based to Spatial Network Analyses". Current Landscape Ecology Reports 4, nr 4 (16.11.2019): 103–12. http://dx.doi.org/10.1007/s40823-019-00044-6.

Pełny tekst źródła
Streszczenie:
Abstract Purpose of Review We synthesize recent methodological and conceptual advances in the field of riverscape ecology, emphasizing areas of synergy with current research in landscape ecology. Recent Findings Recent advances in riverscape ecology highlight the need for spatially explicit examinations of how network structure influences ecological pattern and process, instead of the simple linear (upstream-downstream) view. Developments in GIS, remote sensing, and computer technologies already offer powerful tools for the application of patch- and gradient-based models for characterizing abiotic and biotic heterogeneity across a range of spatial and temporal scales. Along with graph-based analyses and spatial statistical stream network models (i.e., geostatistical modelling), these approaches offer improved capabilities for quantifying spatial and temporal heterogeneity and connectivity relationships, thereby allowing for rigorous and high-resolution analyses of pattern, process, and scale relationships. Summary Spatially explicit network approaches are able to quantify and predict biogeochemical, hydromorphological, and ecological patterns and processes more precisely than models based on longitudinal or lateral riverine gradients alone. Currently, local habitat characteristics appear to be more important than spatial effects in determining population and community dynamics, but this conclusion may change with direct quantification of the movement of materials, energy, and organisms along channels and across ecosystem boundaries—a key to improving riverscape ecology. Coupling spatially explicit riverscape models with optimization approaches will improve land protection and water management efforts, and help to resolve the land sharing vs. land sparing debate.
Style APA, Harvard, Vancouver, ISO itp.
30

Liu, Yunxia, Shiwen Jiang, Yanxun Liu, Rui Wang, Xiao Li, Zhongshang Yuan, Lixia Wang i Fuzhong Xue. "Spatial epidemiology and spatial ecology study of worldwide drug-resistant tuberculosis". International Journal of Health Geographics 10, nr 1 (2011): 50. http://dx.doi.org/10.1186/1476-072x-10-50.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Wallentin, Gudrun. "Spatial simulation: A spatial perspective on individual-based ecology—a review". Ecological Modelling 350 (kwiecień 2017): 30–41. http://dx.doi.org/10.1016/j.ecolmodel.2017.01.017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

WU, JIANGUO (JINGLE). "A GUIDE FOR SPATIAL ANALYSIS IN ECOLOGY". BioScience 56, nr 11 (2006): 938. http://dx.doi.org/10.1641/0006-3568(2006)56[938:agfsai]2.0.co;2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Bataineh, Amanda L., Brian P. Oswald, Mohammad Bataineh, Daniel Unger, I.-Kuai Hung i Daniel Scognamillo. "Spatial autocorrelation and pseudoreplication in fire ecology". Fire Ecology 2, nr 2 (grudzień 2006): 107–18. http://dx.doi.org/10.4996/fireecology.0202107.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Lichstein, Jeremy W., Theodore R. Simons, Susan A. Shriner i Kathleen E. Franzreb. "SPATIAL AUTOCORRELATION AND AUTOREGRESSIVE MODELS IN ECOLOGY". Ecological Monographs 72, nr 3 (sierpień 2002): 445–63. http://dx.doi.org/10.1890/0012-9615(2002)072[0445:saaami]2.0.co;2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

II, Robert Hopkins, i Halley Alberts. "Improving Student Understanding of Spatial Ecology Statistics". American Biology Teacher 77, nr 4 (1.04.2015): 289–93. http://dx.doi.org/10.1525/abt.2015.77.4.9.

Pełny tekst źródła
Streszczenie:
This activity is designed as a primer to teaching population dispersion analysis. The aim is to help improve students’ spatial thinking and their understanding of how spatial statistic equations work. Students use simulated data to develop their own statistic and apply that equation to experimental behavioral data for Gambusia affinis (western mosquitofish). This activity can be adapted and conducted at the 9–16 grade levels.
Style APA, Harvard, Vancouver, ISO itp.
36

Dale, Mark R. T., i Marie-Josée Fortin. "Spatial autocorrelation and statistical tests in ecology". Écoscience 9, nr 2 (styczeń 2002): 162–67. http://dx.doi.org/10.1080/11956860.2002.11682702.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

LOU, Yuan. "Some reaction diffusion models in spatial ecology". SCIENTIA SINICA Mathematica 45, nr 10 (1.09.2015): 1619–34. http://dx.doi.org/10.1360/n012015-00233.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Pickett, S. T. A., i M. L. Cadenasso. "Landscape Ecology: Spatial Heterogeneity in Ecological Systems". Science 269, nr 5222 (21.07.1995): 331–34. http://dx.doi.org/10.1126/science.269.5222.331.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Conlisk, Erin. "Colonization rules and spatial distributions in ecology". Ecological Complexity 28 (grudzień 2016): 218–21. http://dx.doi.org/10.1016/j.ecocom.2016.07.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Gonser, Rusty A., Ryan R. Jensen i Samuel E. Wolf. "The spatial ecology of deer–vehicle collisions". Applied Geography 29, nr 4 (grudzień 2009): 527–32. http://dx.doi.org/10.1016/j.apgeog.2008.11.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Nelson, Trisalyn A., i Barry Boots. "Detecting spatial hot spots in landscape ecology". Ecography 31, nr 5 (październik 2008): 556–66. http://dx.doi.org/10.1111/j.0906-7590.2008.05548.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Roslin, Tomas. "Large-scale spatial ecology of dung beetles". Ecography 24, nr 5 (28.06.2008): 511–24. http://dx.doi.org/10.1111/j.1600-0587.2001.tb00486.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Mysterud, Atle, Inger M. Rivrud, Vegard Gundersen, Christer M. Rolandsen i Hildegunn Viljugrein. "The unique spatial ecology of human hunters". Nature Human Behaviour 4, nr 7 (16.03.2020): 694–701. http://dx.doi.org/10.1038/s41562-020-0836-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Roslin, Tomas. "Large-scale spatial ecology of dung beetles". Ecography 24, nr 5 (październik 2001): 511–24. http://dx.doi.org/10.1034/j.1600-0587.2001.d01-207.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Ellis, J., i D. C. Schneider. "Spatial and temporal scaling in benthic ecology". Journal of Experimental Marine Biology and Ecology 366, nr 1-2 (listopad 2008): 92–98. http://dx.doi.org/10.1016/j.jembe.2008.07.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Rosindell, James, Yan Wong i Rampal S. Etienne. "A coalescence approach to spatial neutral ecology". Ecological Informatics 3, nr 3 (lipiec 2008): 259–71. http://dx.doi.org/10.1016/j.ecoinf.2008.05.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Taena, W., L. M. Kolopaking, B. Barus, R. Boer i B. Juanda. "The Implication of Spatial Ecology Dependence on Spatial Arrangement in Boundary Area". Jurnal Manajemen Hutan Tropika (Journal of Tropical Forest Management) 24, nr 1 (30.04.2018): 1–9. http://dx.doi.org/10.7226/jtfm.24.1.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Halley, J. M., i J. H. Lawton. "The JAEP Ecology of Farmland Modelling Initiative: Spatial Models for Farmland Ecology". Journal of Applied Ecology 33, nr 3 (czerwiec 1996): 435. http://dx.doi.org/10.2307/2404975.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Terrence McCabe, J. "Settlement Ecology: The Social and Spatial Organization of Kofyar Agriculture:Settlement Ecology: The Social and Spatial Organization of Kofyar Agriculture." American Anthropologist 100, nr 1 (marzec 1998): 223. http://dx.doi.org/10.1525/aa.1998.100.1.223.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Germeroth, Lillian, Theodore Sumnicht i Robin Verble. "Scale-Dependent Spatial Ecology of Paleotropical Leaf Litter Ants (Hymenoptera: Formicidae)". Diversity 15, nr 4 (27.03.2023): 494. http://dx.doi.org/10.3390/d15040494.

Pełny tekst źródła
Streszczenie:
The grain for which an observer conducts a study is an important determinant of its outcome. Studies of ants have considered spatial grains spanning from single meters to entire forest ecosystems and found patterns related to nutrient availability, leaf litter depth, disturbance, and forest composition. Here, we examine a Bornean leaf litter ant community at small (1–4 m) and large (50–250 m) spatial scales and consider the differences in community structure using structured 1 m2 quadrats sampled via leaf litter sifting and Berlese extraction. We found that small-scale patterns in ant abundance and richness did not spatially autocorrelate within a plot until >1.5 m. Leaf litter characteristics, forest stand characteristics and sampling season were homogenous among our sites, suggesting that macro-scale stand variables are not largely regulating the small spatial scale ant communities: These may be driven by microclimate, competition, niche space, nutrient available, microclimatic conditions, or other localized effects. Further experimental work is needed to elicit causal mechanisms.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii