Gotowa bibliografia na temat „Sparse Matrix Vector Multiplication”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Sparse Matrix Vector Multiplication”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Sparse Matrix Vector Multiplication"
Tao, Yuan, Yangdong Deng, Shuai Mu, Zhenzhong Zhang, Mingfa Zhu, Limin Xiao i Li Ruan. "GPU accelerated sparse matrix-vector multiplication and sparse matrix-transpose vector multiplication". Concurrency and Computation: Practice and Experience 27, nr 14 (7.10.2014): 3771–89. http://dx.doi.org/10.1002/cpe.3415.
Pełny tekst źródłaFilippone, Salvatore, Valeria Cardellini, Davide Barbieri i Alessandro Fanfarillo. "Sparse Matrix-Vector Multiplication on GPGPUs". ACM Transactions on Mathematical Software 43, nr 4 (23.03.2017): 1–49. http://dx.doi.org/10.1145/3017994.
Pełny tekst źródłaERHEL, JOCELYNE. "SPARSE MATRIX MULTIPLICATION ON VECTOR COMPUTERS". International Journal of High Speed Computing 02, nr 02 (czerwiec 1990): 101–16. http://dx.doi.org/10.1142/s012905339000008x.
Pełny tekst źródłaHaque, Sardar Anisul, Shahadat Hossain i M. Moreno Maza. "Cache friendly sparse matrix-vector multiplication". ACM Communications in Computer Algebra 44, nr 3/4 (28.01.2011): 111–12. http://dx.doi.org/10.1145/1940475.1940490.
Pełny tekst źródłaBienz, Amanda, William D. Gropp i Luke N. Olson. "Node aware sparse matrix–vector multiplication". Journal of Parallel and Distributed Computing 130 (sierpień 2019): 166–78. http://dx.doi.org/10.1016/j.jpdc.2019.03.016.
Pełny tekst źródłaHeath, L. S., C. J. Ribbens i S. V. Pemmaraju. "Processor-efficient sparse matrix-vector multiplication". Computers & Mathematics with Applications 48, nr 3-4 (sierpień 2004): 589–608. http://dx.doi.org/10.1016/j.camwa.2003.06.009.
Pełny tekst źródłaYang, Xintian, Srinivasan Parthasarathy i P. Sadayappan. "Fast sparse matrix-vector multiplication on GPUs". Proceedings of the VLDB Endowment 4, nr 4 (styczeń 2011): 231–42. http://dx.doi.org/10.14778/1938545.1938548.
Pełny tekst źródłaRomero, L. F., i E. L. Zapata. "Data distributions for sparse matrix vector multiplication". Parallel Computing 21, nr 4 (kwiecień 1995): 583–605. http://dx.doi.org/10.1016/0167-8191(94)00087-q.
Pełny tekst źródłaZardoshti, Pantea, Farshad Khunjush i Hamid Sarbazi-Azad. "Adaptive sparse matrix representation for efficient matrix–vector multiplication". Journal of Supercomputing 72, nr 9 (28.11.2015): 3366–86. http://dx.doi.org/10.1007/s11227-015-1571-0.
Pełny tekst źródłaYzelman, A. N., i Rob H. Bisseling. "Cache-Oblivious Sparse Matrix–Vector Multiplication by Using Sparse Matrix Partitioning Methods". SIAM Journal on Scientific Computing 31, nr 4 (styczeń 2009): 3128–54. http://dx.doi.org/10.1137/080733243.
Pełny tekst źródłaRozprawy doktorskie na temat "Sparse Matrix Vector Multiplication"
Ashari, Arash. "Sparse Matrix-Vector Multiplication on GPU". The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417770100.
Pełny tekst źródłaRamachandran, Shridhar. "Incremental PageRank acceleration using Sparse Matrix-Sparse Vector Multiplication". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1462894358.
Pełny tekst źródłaBalasubramanian, Deepan Karthik. "Efficient Sparse Matrix Vector Multiplication for Structured Grid Representation". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1339730490.
Pełny tekst źródłaMansour, Ahmad [Verfasser]. "Sparse Matrix-Vector Multiplication Based on Network-on-Chip / Ahmad Mansour". München : Verlag Dr. Hut, 2015. http://d-nb.info/1075409470/34.
Pełny tekst źródłaSingh, Kunal. "High-Performance Sparse Matrix-Multi Vector Multiplication on Multi-Core Architecture". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524089757826551.
Pełny tekst źródłaEl-Kurdi, Yousef M. "Sparse Matrix-Vector floating-point multiplication with FPGAs for finite element electromagnetics". Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98958.
Pełny tekst źródłaGodwin, Jeswin Samuel. "High-Performancs Sparse Matrix-Vector Multiplication on GPUS for Structured Grid Computations". The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1357280824.
Pełny tekst źródłaKunchum, Rakshith. "On Improving Sparse Matrix-Matrix Multiplication on GPUs". The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492694387445938.
Pełny tekst źródłaPantawongdecha, Payut. "Autotuning divide-and-conquer matrix-vector multiplication". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105968.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 73-75).
Divide and conquer is an important concept in computer science. It is used ubiquitously to simplify and speed up programs. However, it needs to be optimized, with respect to parameter settings for example, in order to achieve the best performance. The problem boils down to searching for the best implementation choice on a given set of requirements, such as which machine the program is running on. The goal of this thesis is to apply and evaluate the Ztune approach [14] on serial divide-and-conquer matrix-vector multiplication. We implemented Ztune to autotune serial divide-and-conquer matrix-vector multiplication on machines with different hardware configurations, and found that Ztuneoptimized codes ran 1%-5% faster than the hand-optimized counterparts. We also compared Ztune-optimized results with other matrix-vector multiplication libraries including the Intel Math Kernel Library and OpenBLAS. Since the matrix-vector multiplication problem is a level 2 BLAS, it is not as computationally intensive as level 3 BLAS problems such as matrix-matrix multiplication and stencil computation. As a result, the measurement in matrix-vector multiplication is more prone to error from factors such as noise, cache alignment of the matrix, and cache states, which lead to wrong decision choices for Ztune. We explored multiple options to get more accurate measurements and demonstrated the techniques that remedied these issues. Lastly, we applied the Ztune approach to matrix-matrix multiplication, and we were able to achieve 2%-85% speedup compared to the hand-tuned code. This thesis represents joint work with Ekanathan Palamadai Natarajan.
by Payut Pantawongdecha.
M. Eng.
Belgin, Mehmet. "Structure-based Optimizations for Sparse Matrix-Vector Multiply". Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/30260.
Pełny tekst źródłaPh. D.
Książki na temat "Sparse Matrix Vector Multiplication"
Andersen, J. The scheduling of sparse matrix-vector multiplicatiion on a massively parallel DAP computer. Uxbridge: Brunel University, Department of Mathematics and Statistics, 1991.
Znajdź pełny tekst źródłaItai, Yad-Shalom, i Langley Research Center, red. Fast multiresolution algorithms for matrix-vector multiplication. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Division., red. An efficient sparse matrix multiplication scheme for the CYBER 205 computer. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.
Znajdź pełny tekst źródłaBisseling, Rob H. Parallel Scientific Computation. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198788348.001.0001.
Pełny tekst źródłaCzęści książek na temat "Sparse Matrix Vector Multiplication"
Vassiliadis, Stamatis, Sorin Cotofana i Pyrrhos Stathis. "Vector ISA Extension for Sparse Matrix-Vector Multiplication". W Euro-Par’99 Parallel Processing, 708–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48311-x_100.
Pełny tekst źródłaMaeda, Hiroshi, i Daisuke Takahashi. "Parallel Sparse Matrix-Vector Multiplication Using Accelerators". W Computational Science and Its Applications – ICCSA 2016, 3–18. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42108-7_1.
Pełny tekst źródłaHishinuma, Toshiaki, Hidehiko Hasegawa i Teruo Tanaka. "SIMD Parallel Sparse Matrix-Vector and Transposed-Matrix-Vector Multiplication in DD Precision". W High Performance Computing for Computational Science – VECPAR 2016, 21–34. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61982-8_4.
Pełny tekst źródłaMonakov, Alexander, i Arutyun Avetisyan. "Implementing Blocked Sparse Matrix-Vector Multiplication on NVIDIA GPUs". W Lecture Notes in Computer Science, 289–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03138-0_32.
Pełny tekst źródłaAlAhmadi, Sarah, Thaha Muhammed, Rashid Mehmood i Aiiad Albeshri. "Performance Characteristics for Sparse Matrix-Vector Multiplication on GPUs". W Smart Infrastructure and Applications, 409–26. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13705-2_17.
Pełny tekst źródłaÇatalyürek, Ümit V., i Cevdet Aykanat. "Decomposing irregularly sparse matrices for parallel matrix-vector multiplication". W Parallel Algorithms for Irregularly Structured Problems, 75–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0030098.
Pełny tekst źródłaWellein, Gerhard, Georg Hager, Achim Basermann i Holger Fehske. "Fast Sparse Matrix-Vector Multiplication for TeraFlop/s Computers". W Lecture Notes in Computer Science, 287–301. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-36569-9_18.
Pełny tekst źródłaMonakov, Alexander, Anton Lokhmotov i Arutyun Avetisyan. "Automatically Tuning Sparse Matrix-Vector Multiplication for GPU Architectures". W High Performance Embedded Architectures and Compilers, 111–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11515-8_10.
Pełny tekst źródłaVuduc, Richard W., i Hyun-Jin Moon. "Fast Sparse Matrix-Vector Multiplication by Exploiting Variable Block Structure". W High Performance Computing and Communications, 807–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11557654_91.
Pełny tekst źródłaWijs, Anton J., i Dragan Bošnački. "Improving GPU Sparse Matrix-Vector Multiplication for Probabilistic Model Checking". W Model Checking Software, 98–116. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31759-0_9.
Pełny tekst źródłaStreszczenia konferencji na temat "Sparse Matrix Vector Multiplication"
Zhuo, Ling, i Viktor K. Prasanna. "Sparse Matrix-Vector multiplication on FPGAs". W the 2005 ACM/SIGDA 13th international symposium. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1046192.1046202.
Pełny tekst źródłaHaque, Sardar Anisul, Shahadat Hossain i Marc Moreno Maza. "Cache friendly sparse matrix-vector multiplication". W the 4th International Workshop. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1837210.1837238.
Pełny tekst źródłaShah, Monika. "Sparse Matrix Sparse Vector Multiplication - A Novel Approach". W 2015 44th International Conference on Parallel Processing Workshops (ICPPW). IEEE, 2015. http://dx.doi.org/10.1109/icppw.2015.18.
Pełny tekst źródłaBuluç, Aydin, Jeremy T. Fineman, Matteo Frigo, John R. Gilbert i Charles E. Leiserson. "Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks". W the twenty-first annual symposium. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1583991.1584053.
Pełny tekst źródłaZhuowei Wang, Xianbin Xu, Wuqing Zhao, Yuping Zhang i Shuibing He. "Optimizing sparse matrix-vector multiplication on CUDA". W 2010 2nd International Conference on Education Technology and Computer (ICETC 2010). IEEE, 2010. http://dx.doi.org/10.1109/icetc.2010.5529724.
Pełny tekst źródłaPinar, Ali, i Michael T. Heath. "Improving performance of sparse matrix-vector multiplication". W the 1999 ACM/IEEE conference. New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/331532.331562.
Pełny tekst źródłaSun, Junqing, Gregory Peterson i Olaf Storaasli. "Sparse Matrix-Vector Multiplication Design on FPGAs". W 15th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM 2007). IEEE, 2007. http://dx.doi.org/10.1109/fccm.2007.56.
Pełny tekst źródłaMerrill, Duane, i Michael Garland. "Merge-Based Parallel Sparse Matrix-Vector Multiplication". W SC16: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2016. http://dx.doi.org/10.1109/sc.2016.57.
Pełny tekst źródłaLi, Haoran, Harumichi Yokoyama i Takuya Araki. "Merge-Based Parallel Sparse Matrix-Sparse Vector Multiplication with a Vector Architecture". W 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 2018. http://dx.doi.org/10.1109/hpcc/smartcity/dss.2018.00038.
Pełny tekst źródłaAzad, Ariful, i Aydin Buluc. "A Work-Efficient Parallel Sparse Matrix-Sparse Vector Multiplication Algorithm". W 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2017. http://dx.doi.org/10.1109/ipdps.2017.76.
Pełny tekst źródłaRaporty organizacyjne na temat "Sparse Matrix Vector Multiplication"
Vuduc, R., i H. Moon. Fast sparse matrix-vector multiplication by exploiting variable block structure. Office of Scientific and Technical Information (OSTI), lipiec 2005. http://dx.doi.org/10.2172/891708.
Pełny tekst źródłaDeveci, Mehmet, Christian Robert Trott i Sivasankaran Rajamanickam. Multi-threaded Sparse Matrix Sparse Matrix Multiplication for Many-Core and GPU Architectures. Office of Scientific and Technical Information (OSTI), styczeń 2018. http://dx.doi.org/10.2172/1417260.
Pełny tekst źródłaNusbaum, Kurtis Lee. Optimizing Tpetra%3CU%2B2019%3Es sparse matrix-matrix multiplication routine. Office of Scientific and Technical Information (OSTI), sierpień 2011. http://dx.doi.org/10.2172/1029781.
Pełny tekst źródłaDeveci, Mehmet, Simon David Hammond, Michael M. Wolf i Sivasankaran Rajamanickam. Sparse Matrix-Matrix Multiplication on Multilevel Memory Architectures: Algorithms and Experiments. Office of Scientific and Technical Information (OSTI), kwiecień 2018. http://dx.doi.org/10.2172/1435688.
Pełny tekst źródłaHendrickson, B., R. Leland i S. Plimpton. An efficient parallel algorithm for matrix-vector multiplication. Office of Scientific and Technical Information (OSTI), marzec 1993. http://dx.doi.org/10.2172/6519330.
Pełny tekst źródłaLiberty, Edo, i Steven W. Zucker. The Mailman Algorithm: A Note on Matrix Vector Multiplication. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2008. http://dx.doi.org/10.21236/ada481737.
Pełny tekst źródłaBallard, Grey Malone, Jonathan Joseph Hu i Christopher Siefert. Reducing Communication Costs for Sparse Matrix Multiplication within Algebraic Multigrid. Office of Scientific and Technical Information (OSTI), wrzesień 2015. http://dx.doi.org/10.2172/1504845.
Pełny tekst źródłaGropp, W. D., D. K. Kaushik, M. Minkoff i B. F. Smith. Improving the performance of tensor matrix vector multiplication in quantum chemistry codes. Office of Scientific and Technical Information (OSTI), maj 2008. http://dx.doi.org/10.2172/928654.
Pełny tekst źródłaTolleson, Blayne, Matthew Marinella, Christopher Bennett, Hugh Barnaby, Donald Wilson i Jesse Short. Vector-Matrix Multiplication Engine for Neuromorphic Computation with a CBRAM Crossbar Array. Office of Scientific and Technical Information (OSTI), luty 2022. http://dx.doi.org/10.2172/1846087.
Pełny tekst źródłaHammond, Simon David, i Christian Robert Trott. Optimizing the Performance of Sparse-Matrix Vector Products on Next-Generation Processors. Office of Scientific and Technical Information (OSTI), czerwiec 2017. http://dx.doi.org/10.2172/1528773.
Pełny tekst źródła