Gotowa bibliografia na temat „Sparse hyperspectral unmixing”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Sparse hyperspectral unmixing”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Sparse hyperspectral unmixing"
Deng, Chengzhi, Yaning Zhang, Shengqian Wang, Shaoquan Zhang, Wei Tian, Zhaoming Wu i Saifeng Hu. "Approximate Sparse Regularized Hyperspectral Unmixing". Mathematical Problems in Engineering 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/947453.
Pełny tekst źródłaDeng, Chengzhi, Yonggang Chen, Shaoquan Zhang, Fan Li, Pengfei Lai, Dingli Su, Min Hu i Shengqian Wang. "Robust Dual Spatial Weighted Sparse Unmixing for Remotely Sensed Hyperspectral Imagery". Remote Sensing 15, nr 16 (16.08.2023): 4056. http://dx.doi.org/10.3390/rs15164056.
Pełny tekst źródłaZhang, Shuaiyang, Wenshen Hua, Gang Li, Jie Liu, Fuyu Huang i Qianghui Wang. "Double Regression-Based Sparse Unmixing for Hyperspectral Images". Journal of Sensors 2021 (3.09.2021): 1–14. http://dx.doi.org/10.1155/2021/5575155.
Pełny tekst źródłaFeng, Ruyi, Lizhe Wang i Yanfei Zhong. "Joint Local Block Grouping with Noise-Adjusted Principal Component Analysis for Hyperspectral Remote-Sensing Imagery Sparse Unmixing". Remote Sensing 11, nr 10 (23.05.2019): 1223. http://dx.doi.org/10.3390/rs11101223.
Pełny tekst źródłaLi, Yalan, Yixuan Li, Wenwu Xie, Qian Du, Jing Yuan, Lin Li i Chen Qi. "Adaptive multiscale sparse unmixing for hyperspectral remote sensing image". Computer Science and Information Systems, nr 00 (2023): 9. http://dx.doi.org/10.2298/csis220828009l.
Pełny tekst źródłaFeng, Dan, Mingyang Zhang i Shanfeng Wang. "Multipopulation Particle Swarm Optimization for Evolutionary Multitasking Sparse Unmixing". Electronics 10, nr 23 (5.12.2021): 3034. http://dx.doi.org/10.3390/electronics10233034.
Pełny tekst źródłaIordache, Marian-Daniel, José M. Bioucas-Dias i Antonio Plaza. "Sparse Unmixing of Hyperspectral Data". IEEE Transactions on Geoscience and Remote Sensing 49, nr 6 (czerwiec 2011): 2014–39. http://dx.doi.org/10.1109/tgrs.2010.2098413.
Pełny tekst źródłaSigurdsson, Jakob, Magnus O. Ulfarsson, Johannes R. Sveinsson i Jose M. Bioucas-Dias. "Sparse Distributed Multitemporal Hyperspectral Unmixing". IEEE Transactions on Geoscience and Remote Sensing 55, nr 11 (listopad 2017): 6069–84. http://dx.doi.org/10.1109/tgrs.2017.2720539.
Pełny tekst źródłaTong, Lei, Jing Yu, Chuangbai Xiao i Bin Qian. "Hyperspectral unmixing via deep matrix factorization". International Journal of Wavelets, Multiresolution and Information Processing 15, nr 06 (listopad 2017): 1750058. http://dx.doi.org/10.1142/s0219691317500588.
Pełny tekst źródłaZhao, Genping, Fei Li, Xiuwei Zhang, Kati Laakso i Jonathan Cheung-Wai Chan. "Archetypal Analysis and Structured Sparse Representation for Hyperspectral Anomaly Detection". Remote Sensing 13, nr 20 (13.10.2021): 4102. http://dx.doi.org/10.3390/rs13204102.
Pełny tekst źródłaRozprawy doktorskie na temat "Sparse hyperspectral unmixing"
Vila, Jeremy P. "Empirical-Bayes Approaches to Recovery of Structured Sparse Signals via Approximate Message Passing". The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429191048.
Pełny tekst źródłaWei, Qi. "Bayesian fusion of multi-band images : A powerful tool for super-resolution". Phd thesis, Toulouse, INPT, 2015. http://oatao.univ-toulouse.fr/14398/1/wei.pdf.
Pełny tekst źródłaBieniarz, Jakub. "Sparse Methods for Hyperspectral Unmixing and Image Fusion". Doctoral thesis, 2016. https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2016030214286.
Pełny tekst źródłaAhmad, Touseef. "Augmenting Hyperspectral Image Unmixing Models Using Spatial Correlation, Spectral Variability, And Sparsity". Thesis, 2022. https://etd.iisc.ac.in/handle/2005/6081.
Pełny tekst źródłaNicolae, Aurel. "A comparative analysis of classic Geometrical methods and sparse regression methods for linearly unmixing hyperspectral image data". Thesis, 2019. https://hdl.handle.net/10539/29542.
Pełny tekst źródłaThis research report presents an across-the-board comparative analysis on algorithms for linearly unmixing hyperspectral image data cubes. Convex geometry based endmember extraction algorithms (EEAs) such as the pixel purity index (PPI) algorithm and N-FINDR have been commonly used to derive the material spectral signatures called endmembers from the hyperspectral images. The estimation of their corresponding fractional abundances is done by solving the related inverse problem in a least squares sense. Semi-supervised sparse regression algorithms such as orthogonal matching pursuit (OMP) and sparse unmixing algorithm via variable splitting and augmented Lagrangian (SUnSAL) bypass the endmember extraction process by employing widely available spectral libraries a priori, automatically returning the fractional abundances and sparsity estimates. The main contribution of this work is to serve as a rich resource on hyperspectral image unmixing, providing end-to-end evaluation of a wide variety of algorithms using di erent arti cial data sets.
XN2020
Części książek na temat "Sparse hyperspectral unmixing"
Zhang, Shaoquan, Yuanchao Su, Xiang Xu, Jun Li, Chengzhi Deng i Antonio Plaza. "Recent Advances in Hyperspectral Unmixing Using Sparse Techniques and Deep Learning". W Hyperspectral Image Analysis, 377–405. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38617-7_13.
Pełny tekst źródłaWu, Feiyang, Yuhui Zheng i Le Sun. "Sparse Unmixing for Hyperspectral Image with Nonlocal Low-Rank Prior". W Intelligence Science and Big Data Engineering. Visual Data Engineering, 506–16. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-36189-1_42.
Pełny tekst źródłaMarques, Ion, i Manuel Graña. "Hybrid Sparse Linear and Lattice Method for Hyperspectral Image Unmixing". W Lecture Notes in Computer Science, 266–73. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07617-1_24.
Pełny tekst źródłaLiu, Jing, You Zhang, Xiao-die Yang i Yi Liu. "Hyperspectral Remote Sensing Images Unmixing Based on Sparse Concept Coding". W Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery, 823–30. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70665-4_89.
Pełny tekst źródłaZenati, Tarek, Bruno Figliuzzi i Shu Hui Ham. "Surface Oxide Detection and Characterization Using Sparse Unmixing on Hyperspectral Images". W Lecture Notes in Computer Science, 291–302. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13321-3_26.
Pełny tekst źródłaEsmaeili Salehani, Yaser, i Mohamed Cheriet. "Non-dictionary Aided Sparse Unmixing of Hyperspectral Images via Weighted Nonnegative Matrix Factorization". W Lecture Notes in Computer Science, 596–604. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59876-5_66.
Pełny tekst źródłaChen, Mengyue, Fanqiang Kong, Shunmin Zhao i Keyao Wen. "Hyperspectral Unmixing Method Based on the Non-convex Sparse and Spatial Correlation Constraints". W Lecture Notes in Electrical Engineering, 441–46. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8411-4_61.
Pełny tekst źródłaLi, Denggang, Shutao Li i Huali Li. "Hyperspectral Image Unmixing Based on Sparse and Minimum Volume Constrained Nonnegative Matrix Factorization". W Communications in Computer and Information Science, 44–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45643-9_5.
Pełny tekst źródłaStreszczenia konferencji na temat "Sparse hyperspectral unmixing"
Sigurdsson, Jakob, Magnus O. Ulfarsson, Johannes R. Sveinsson i Jose M. Bioucas-Dias. "Sparse distributed hyperspectral unmixing". W IGARSS 2016 - 2016 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2016. http://dx.doi.org/10.1109/igarss.2016.7730824.
Pełny tekst źródłaIordache, Marian-Daniel, Jose Bioucas-Dias i Antonio Plaza. "Unmixing sparse hyperspectral mixtures". W 2009 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2009). IEEE, 2009. http://dx.doi.org/10.1109/igarss.2009.5417368.
Pełny tekst źródłaAggarwal, Hemant Kumar, i Angshul Majumdar. "Sparse filtering based hyperspectral unmixing". W 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, 2016. http://dx.doi.org/10.1109/whispers.2016.8071765.
Pełny tekst źródłaIordache, Marian-Daniel, Jose M. Bioucas-Dias i Antonio Plaza. "Collaborative sparse unmixing of hyperspectral data". W IGARSS 2012 - 2012 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2012. http://dx.doi.org/10.1109/igarss.2012.6351900.
Pełny tekst źródłaRodriguez Alves, Jose M., Jose M. P. Nascimento, Jose M. Bioucas-Dias, Antonio Plaza i Vitor Silva. "Parallel sparse unmixing of hyperspectral data". W IGARSS 2013 - 2013 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2013. http://dx.doi.org/10.1109/igarss.2013.6723057.
Pełny tekst źródłaIordache, Marian-Daniel, Antonio Plaza i Jose Bioucas-Dias. "Recent developments in sparse hyperspectral unmixing". W IGARSS 2010 - 2010 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2010. http://dx.doi.org/10.1109/igarss.2010.5653075.
Pełny tekst źródłaMa, Yong, Chang Li i Jiayi Ma. "Robust sparse unmixing of hyperspectral data". W IGARSS 2016 - 2016 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2016. http://dx.doi.org/10.1109/igarss.2016.7730618.
Pełny tekst źródłaSigurdsson, Jakob, Magnus O. Ulfarsson i Johannes R. Sveinsson. "Sparse and low rank hyperspectral unmixing". W 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2017. http://dx.doi.org/10.1109/igarss.2017.8126936.
Pełny tekst źródłaChen, Yonggang, Chengzhi Deng, Shaoquan Zhang, Fan Li, Ningyuan Zhang i Shengqian Wang. "Dual Spatial Weighted Sparse Hyperspectral Unmixing". W IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2022. http://dx.doi.org/10.1109/igarss46834.2022.9883616.
Pełny tekst źródłaFang, Bei, Ying Li, Peng Zhang i Bendu Bai. "Kernel sparse NMF for hyperspectral unmixing". W 2014 IEEE International Conference on Orange Technologies (ICOT). IEEE, 2014. http://dx.doi.org/10.1109/icot.2014.6954672.
Pełny tekst źródłaRaporty organizacyjne na temat "Sparse hyperspectral unmixing"
Moeller, Michael, Ernie Esser, Stanley Osher, Guillermo Sapiro i Jack Xin. A Convex Model for Matrix Factorization and Dimensionality Reduction on Physical Space and Its Application to Blind Hyperspectral Unmixing. Fort Belvoir, VA: Defense Technical Information Center, październik 2010. http://dx.doi.org/10.21236/ada540658.
Pełny tekst źródła