Gotowa bibliografia na temat „Sound-waves”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Sound-waves”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Sound-waves"

1

Hults, Morris G. "Sound waves". Physics Teacher 39, nr 6 (wrzesień 2001): 377. http://dx.doi.org/10.1119/1.1531955.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Wolf, Franz Josef. "Sound absorber for sound waves". Journal of the Acoustical Society of America 111, nr 6 (2002): 2535. http://dx.doi.org/10.1121/1.1492935.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Dunkel, Jörn. "Rolling sound waves". Nature Materials 17, nr 9 (23.08.2018): 759–60. http://dx.doi.org/10.1038/s41563-018-0155-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Jones, Willie. "Sound waves for brain waves - [update]". IEEE Spectrum 46, nr 1 (styczeń 2009): 16–17. http://dx.doi.org/10.1109/mspec.2009.4734300.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kenyon, Kern E. "Momentum of sound waves." Physics Essays 21, nr 1 (1.03.2008): 68–69. http://dx.doi.org/10.4006/1.3000091.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Eisenstein, Daniel J., i Charles L. Bennett. "Cosmic sound waves rule". Physics Today 61, nr 4 (kwiecień 2008): 44–50. http://dx.doi.org/10.1063/1.2911177.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Swinbanks, Malcolm A. "Attenuation of sound waves". Journal of the Acoustical Society of America 80, nr 4 (październik 1986): 1281. http://dx.doi.org/10.1121/1.394459.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Swinbanks, Malcolm A. "Attenuation of sound waves". Journal of the Acoustical Society of America 81, nr 5 (maj 1987): 1655. http://dx.doi.org/10.1121/1.395061.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Ashley, Steven. "Sound Waves At Work". Mechanical Engineering 120, nr 03 (1.03.1998): 80–84. http://dx.doi.org/10.1115/1.1998-mar-2.

Pełny tekst źródła
Streszczenie:
Researchers have devised a new technique to use sound waves, opening the way for simple acoustic compressors, speedy chemical-process reactors, and clean electric-power generators. MacroSonix Corp. in Richmond, Vermont, has developed a technique by which standing sound waves resonating in specially shaped closed cavities can be loaded with thousands of times more energy than was previously possible. Company’s wave-shaping technology is known as resonant macrosonic synthesis (RMS). With some clever engineering, he said, the elevated acoustic-energy levels produced using RMS can be tapped for a wide range of industrial applications, including simplified compressors, pumps, speedy chemical-process reactors, and clean electric-power generators. MacroSonix has already licensed the RMS technology to a large appliance manufacturer to develop acoustic compressors for home refrigerators and air conditioners. MacroSonix has demonstrated the ability to produce high-pressure amplitudes inside resonator cavities. The MacroSonix technology relates to pressure waves in gases, which tend to be nonlinear in behavior. MacroSonix is working on a new licensing deal for an RMS air compressor and another with an electronic-component supplier. The company would like to enter larger research consortia with private, university, or government research labs to explore the RMS electric-power-generation concept.
Style APA, Harvard, Vancouver, ISO itp.
10

Kann, K. B. "Sound waves in foams". Colloids and Surfaces A: Physicochemical and Engineering Aspects 263, nr 1-3 (sierpień 2005): 315–19. http://dx.doi.org/10.1016/j.colsurfa.2005.04.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Sound-waves"

1

Zinoviev, Alexei. "Application of the Multi-Modal Integral Method (MMIM) to sound wave scattering in an acoustic waveguide". Title page, contents and abstract only, 1999. http://hdl.handle.net/2440/37720.

Pełny tekst źródła
Streszczenie:
The current work is devoted to the problem of sound wave scattering by elastic cylindrical objects in a plain acoustic waveguide. The Multi- Modal Integral Method (MMIM) is proposed, which is based on nonstandard representation of the Green's function. It combines advantages of integral equation and eigenfunction methods and provides a quickly converging and highly accurate solution, taking into account all the waveguide modes up to infinite order. As illustrations of application of this method, acoustic diffraction is calculated from a system of several parallel homogeneous cylinders and from an air-filled cylindrical elastic shell. Numerical solutions are found for various versions of the system of elastic cylinders in a fluid layer with perfectly soft and rigid boundaries. Phase - frequency and amplitude - frequency characteristics are found for modal coefficients of the scattered field. Sharp increase of their amplitudes is found near resonance frequencies of the waveguide and the scattering cylinders. Pictures of the source density on the surface of the cylinders show that the nature of their distribution strongly depends on the frequency and the mutual location of the cylinders in the waveguide. Field structure near the cylinders reveals that higher-order waveguide modes play a significant role in the scattering process. Spatial distribution of the acoustic power flow near the scattering object is calculated for several frequencies and two sets of elastic properties of the cylinder. It is shown that at the critical frequencies of the waveguide as well as at the internal resonances of the cylinder the acoustic energy flows in closed paths in some regions of the waveguide. Near the internal resonances of the cylinder the closed paths are located in the near vicinity of the scattering object and partially go through its interior. It is suggested that re-radiation of the energy stored in the vortices may contribute to the echo phenomenon. The integral reflection coefficient is calculated for a system waveguide/shell for different values of wall thickness and distance between the shell and the waveguide bottom. Maxima and minima in the reflection coefficient associated with cut-on frequencies of the waveguide modes and structural resonances of the shell are identified. The calculations show that the conventional definition of target strength in a shallow waveguide is inappropriate. Different kinds of resonances are identified in frequency and angular dependencies of the velocity amplitude of the shell surface. These resonances belong to the following groups: a) critical frequencies of the waveguide modes, b) structural resonances of the elastic shell, c) resonance oscillations of the gas-filled interior of the shell, d) resonance oscillations of the coupled fluid-shell. Application of the Multi-Modal Integral Method (MMIM) to Sound Wave Scattering in an Acoustic Waveguide. Temporal sequences of pictures showing the spatial structure of the total and scattered fields in the near and far field zones are obtained. It is shown that the incident field produces waves of acoustic pressure propagating along the boundary of the scattering object, which, in turn, generate the scattered acoustic field. In the process of propagation, the waves may interact with each other via the fluid or the scattering object. This leads to significant changes of the structure of the acoustic field and of the amount of acoustic energy reflected from the scatterer. It is also shown that, in most cases, standing waves exist between the scatterer and the waveguide boundaries. Accuracy of the Multi-Modal Integral Method is discussed. It is shown that the implementation of the method requires few computer resources for good accuracy of the solution.
Thesis (Ph.D.)--School of Mechanical Engineering, 1999.
Style APA, Harvard, Vancouver, ISO itp.
2

Chambers, James P. "Scale model experiments on the diffraction and scattering of sound by geometrical step discontinuities and curved rough surfaces". Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/17858.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Yargus, Michael W. "Experimental study of sound waves in sandy sediment /". Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/6075.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Menchon, Enrich Ricard. "Spatial adiabatic passage: light, sound and matter waves". Doctoral thesis, Universitat Autònoma de Barcelona, 2013. http://hdl.handle.net/10803/129476.

Pełny tekst źródła
Streszczenie:
El naixement de la Mecànica Quàntica va proporcionar el marc teòric que permetia poder explicar fenòmens prèviament observats experimentalment, com ara la radiació del cos negre, l'efecte fotoelèctric o les línies espectrals de gasos atòmics, i també va permetre entendre millor aspectes fonamentals relacionats amb la dualitat ona-partícula i la interacció entre radiació i matèria. La Mecànica Quàntica ha estat també l'origen de disciplines més específiques com l'Òptica Quàntica o la Informació Quàntica, les quals s’ocupen parcialment del que es coneix com Enginyeria Quàntica. En aquest context, s'han proposat processos de passatge adiabàtic, que consisteixen en el seguiment adiabàtic d'un estat propi del sistema, i que permeten un control molt robust i eficient de la transferència de població entre dos estats assimptòtics. Com molts altres processos en Mecànica Quàntica, els processos de passatge adiabàtic són purament oscil•latoris i poden ser considerats en altres sistemes físics no quàntics que suportin quantitats oscil•lants. En aquesta tesi, s'analitzen processos de passatge adiabàtic en diferents sistemes físics per a controlar la propagació de llum, so i ones de matèria en sistemes de guies acoblades, i la transferència d'àtoms freds individuals en trampes de potencial harmòniques. Adicionalment, utilitzem la robustesa i l'alta eficiència del passatge adiabàtic per proposar nous dispositius i discutir noves implementacions en aquests diversos camps. Específicament, demostrem experimentalment el passatge espacial adiabàtic de llum en un sistema de tres guies TIR d'òxid de silici compatibles-CMOS acoblades mitjançant el camp evanescent, que consisteix en una transferència completa d'intensitat de llum entre les guies externes del sistema. L'avantatge d'usar el passatge espacial adiabàtic respecte els acobladors direccionals estàndard és que la transferència de llum és robusta enfront de fluctuacions tecnològiques i no depèn de valors precisos dels paràmetres. Aquest és el primer dispositiu de passatge espacial adiabàtic per llum fabricat amb tecnologia compatible-CMOS, el que permet una integració massiva i de baix cost. A més, també demostrem experimentalment que aquest sistema de guies es comporta simultàniament com a filtre passa alts i passa baixos, amb unes característiques que el fan una alternativa a altres tipus de filtres integrables com filtres basats en interferència o en absorció. Adicionalment, adrecem el passatge espacial adiabàtic d'ones sonores en sistemes de dos defectes lineals acoblats en cristalls sònics. Calculant els diagrames de bandes per analitzar els supermodes del sistema disponibles i modificant apropiadament la geometria dels defectes lineals al llarg de la propagació, dissenyem dispositius que funcionen com a divisors i acobladors adiabàtics mutifreqüència i com a analitzadors de diferència de fase. També, proposem un mètode per injectar, extreure i filtrar en velocitat àtoms neutres en trampes en forma d'anell mitjançant el passatge espacial adiabàtic utilitzant dues guies addicionals. La proposta es basa en el seguiment adiabàtic d’un estat propi transversal del sistema. Realitzem càlculs semianalítics que encaixen perfectament amb els resultats de simulacions numèriques de l'equació de Schrödinger. També mostrem que la nostra proposta podria ser implementada experimentalment utilitzant paràmetres realistes d'àtoms ultrafreds en potencials òptics dipolars. Finalment, estudiem el passatge adiabàtic d'un àtom fred individual en un triple pou de potencial bidimensional, anant més enllà dels sistemes coneguts, que són de manera efectiva unidimensionals i estudiant les possibilitats que sorgeixen dels graus de llibertat addicionals. D'una banda, un sistema de tres pous de potencial amb les trampes en una geometria triangular es proposa per a interferometria d'ones de matèria, aprofitant un creuament de nivells que apareix en l'espectre d'energia. D'altra banda, es genera moment angular satisfactòriament en una configuració similar on les trampes tenen freqüències d'atrapament diferents, seguint simultàniament dos estats propis del sistema.
The birth of Quantum Mechanics provided a theoretical framework that could explain some previously experimentally reported phenomena, such as the black body radiation, the photoelectric effect or the spectral lines of atomic gases, and also allowed for a better understanding of fundamental aspects related to the wave-particle duality and the interaction between radiation and matter. Quantum Mechanics has been also the origin of more specific disciplines such as Quantum Optics or Quantum Information science, which are partially devoted to a more applied research field that is known as Quantum Engineering. In this context, adiabatic passage processes consisting in the adiabatic following of an eigenstate of the system, which allows for a very robust and efficient control of the population transfer between two asymptotic states have been proposed. As many other processes in Quantum Mechanics, adiabatic passage processes are purely oscillatory and can be extended to other non-quantum physical systems, which also support oscillating quantities. In this thesis, spatial adiabatic passage processes are addressed in different oscillatory physical systems to control light, sound and matter waves propagation in systems of coupled waveguides, and the transfer of single cold atoms in harmonic potentials. Additionally, we make use of the robustness and high efficiency of the adiabatic passage to propose new devices and discuss new implementations in these various fields. To be specific, we experimentally demonstrate the spatial adiabatic passage of light in a system of three evanescent-coupled CMOS-compatible silicon oxide TIR waveguides, which consists in a complete transfer of light intensity between the outermost waveguides of the system. The advantage of using spatial adiabatic passage compared to standard directional couplers is that the light transfer is robust in front of technological fluctuations and does not depend on precise parameter values. Additionally, this is the first spatial adiabatic passage of light device fabricated in CMOS-compatible technology, which allows for massive and low cost integration. Furthermore, we also experimentally show that this system of coupled waveguides behaves as a simultaneously low- and high-pass spectral filter, with features that makes it an alternative to other integrated filters like interferenceñbased and absorbance-based filters. In addition, we address the spatial adiabatic passage of sound waves in systems of two coupled linear defects in sonic crystals. By calculating the band diagrams to analyze the available supermodes of the system and modifying the geometry of the linear defects along the propagation distance appropriately, we design devices working as a multifrequency adiabatic splitter, as a coupler and also as a phase difference analyser. Furthermore, we discuss a novel method to inject, extract and velocity filter neutral atoms in a ring trap via a spatial adiabatic passage process by using two extra waveguides. The proposal is based on the adiabatic following of a transversal eigenstate of the system. Semianalytical calculations are performed, which perfectly match with the results of the numerical integration of the Schrˆdinger equation. We also show that our proposal could be experimentally implemented for realistic state-of-the-art parameters of ultracold atoms in optical dipole potentials. Finally, we study the spatial adiabatic passage of a single cold atom in two-dimensional triple-well potentials, going beyond the well-understood effective one-dimensional systems and studying the possibilities arising from the additional degrees of freedom. On the one hand, a system of three coupled identical harmonic potentials with the traps lying in a triangular configuration is proposed for matter wave interferometry taking profit of a level crossing appearing in the energy spectrum. On the other hand, angular momentum is successfully generated in a similar configuration where the three harmonic traps have different trapping frequencies by simultaneously following two eigenstates of the system.
Style APA, Harvard, Vancouver, ISO itp.
5

Legendre, César. "On the interactions of sound waves and vortices". Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209147.

Pełny tekst źródła
Streszczenie:
The effects of vortices on the propagation of acoustic waves are numerous, from simple convection effects to instabilities in the acoustic phenomena, including absorption,

reflection and refraction effects. This work focusses on the effects of mean flow

vorticity on the acoustic propagation. First, a theoretical background is presented

in chapters 2-5. This part contains: (i) the fluid dynamics and thermodynamics

relations; (ii) theories of sound generation by turbulent flows; and (iii) operators taken

from scientific literature to take into account the vorticity effects on acoustics. Later,

a family of scalar operators based on total enthalpy terms are derived to handle mean

vorticity effects of arbitrary flows in acoustics (chapter 6). Furthermore, analytical

solutions of Pridmore-Brown’s equation are featured considering exponential boundary

layers whose profile depend on the acoustic parameters of the problem (chapter 7).

Finally, an extension of Pridmore-Brown’s equation is formulated for predicting the

acoustic propagation over a locally-reacting liner in presence of a boundary layer of

linear velocity profile superimposed to a constant cross flow (chapter 8).


Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished

Style APA, Harvard, Vancouver, ISO itp.
6

Zinoviev, Alexei lurjevich. "Application of the Multi-Modal Integral Method (MMIM) to sound wave scattering in an acoustic waveguide". Click here to access, 1999. http://thesis.library.adelaide.edu.au/public/adt-SUA20050905.140025.

Pełny tekst źródła
Streszczenie:
Thesis (Ph.D.)--University of Adelaide, Dept. of Mechanical Engineering, 2000.
Title from screen page (viewed September 13 2005). Includes bibliographical references. Also available in print version.
Style APA, Harvard, Vancouver, ISO itp.
7

Wang, Qiang. "Atmospheric refraction and propagation over curved surfaces". n.p, 1997. http://ethos.bl.uk/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Dostal, Jack Alan. "An investigation into student understanding of longitudinal standing waves". Thesis, Montana State University, 2008. http://etd.lib.montana.edu/etd/2008/dostal/DostalJ1208.pdf.

Pełny tekst źródła
Streszczenie:
This study investigates the difficulties that introductory university physics students have with the concept of longitudinal standing waves in the context of standing waves in pipes. My goal is to identify difficulties that persist even after standard instruction on longitudinal standing waves and attempt to improve upon that method of instruction. The study follows a four-step design. I first use exploratory surveys and interviews with students to elicit the difficulties present in students\' understanding of longitudinal standing waves in pipes. I then use the information gained to create and assessment instrument, the Standing Waves Diagnostic Test, and a curricular intervention, the Longitudinal Standing Waves Tutorial. I then undertake a three-step process of pre-testing students with the Standing Wave Diagnostic Test, intervention with the Longitudinal Standing Waves Tutorial, and post-testing again with the Standing Wave Diagnostic Test to determine the impact of the intervention. This is then compared to data from students in classes where the intervention is not used. Students using the intervention significantly outperform their non-intervention counterparts on the Standing Wave Diagnostic Test. The results of the students pre- and post-tests indicate that significant improvement in students\' understandings of longitudinal standing waves can be achieved by the use of the tutorial.
Style APA, Harvard, Vancouver, ISO itp.
9

Cornell, Jason E. "Verification of the single scattering analytical model for mode coupling effects caused by solitons". Thesis, Monterey, California : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Sep/09Sep_Cornell.pdf.

Pełny tekst źródła
Streszczenie:
Thesis (M.S. in Applied Physics)--Naval Postgraduate School, September 2009.
Thesis Advisor(s): Colosi, John A. ; Smith, Kevin B. "September 2009." Description based on title screen as viewed on November 5, 2009. Author(s) subject terms: Shallow-water environment, 3-D simulations, vertical mode coupling, Internal Solitary Waves, solitons, acoustic variability. Includes bibliographical references (p. 55). Also available in print.
Style APA, Harvard, Vancouver, ISO itp.
10

Ailes-Sengers, Lynn H. "Pulse broadening, polarimetric and angular memory effects of wave scattering from very rough surfaces /". Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/5856.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Sound-waves"

1

Rogers, Janet Marie. Sound waves. Victoria, BC: Ekstasis Editions, 2006.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Steve, Parker. Making waves: Sound. Oxford: Heinemann Library, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Winterberg, Jenna. Sound waves and communication. Huntington Beach, CA: Teacher Created Materials, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Yukio, Mishima. The sound of waves. New York: Vintage Books, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ardley, Neil. Sound waves to music. London: Gloucester Press, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Hillesheim, Heather. Sound and light. New York NY: Infobase Learning, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Barile, Claudia, Caterina Casavola, Giovanni Pappalettera i Vimalathithan Paramsamy Kannan. Sound Waves and Acoustic Emission. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23789-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Investigating Sound. Minneapolis: Lerner Publications, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Abagnali, Vitale. Sound waves: Propagation, frequencies, and effects. Hauppauge, N.Y: Nova Science Publishers, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Center, Langley Research, red. Application of ray theory to propagation of low frequency noise from wind turbines. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Sound-waves"

1

Davies, Alan J. "Sound Waves". W Waves, 68–81. London: Macmillan Education UK, 1993. http://dx.doi.org/10.1007/978-1-349-12067-3_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Krüger, Timm, Halim Kusumaatmaja, Alexandr Kuzmin, Orest Shardt, Goncalo Silva i Erlend Magnus Viggen. "Sound Waves". W The Lattice Boltzmann Method, 493–529. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44649-3_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hartmann, William M. "Sound Waves". W Principles of Musical Acoustics, 39–52. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6786-1_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Davis, Julian L. "Sound Waves". W Wave Propagation in Solids and Fluids, 159–91. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3886-7_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Brekhovskikh, Leonid M., i Valery Goncharov. "Sound Waves". W Springer Series on Wave Phenomena, 262–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-85034-9_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Radi, Hafez A., i John O. Rasmussen. "Sound Waves". W Undergraduate Lecture Notes in Physics, 499–530. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23026-4_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Peterson, Hamlet A. "Sound Waves". W Physeal Injury Other Than Fracture, 329–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22563-5_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Maciel, Walter J. "Sound Waves". W Undergraduate Lecture Notes in Physics, 97–108. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04328-9_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Olbers, Dirk, Jürgen Willebrand i Carsten Eden. "Sound Waves". W Ocean Dynamics, 161–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23450-7_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Brekhovskikh, Leonid, i Valery Goncharov. "Sound Waves". W Springer Series on Wave Phenomena, 262–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-96861-7_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Sound-waves"

1

Merlino, Robert L., Bengt Eliasson i Padma K. Shukla. "Dust-Acoustic Waves: Visible Sound Waves". W NEW DEVELOPMENTS IN NONLINEAR PLASMA PHYSICS: Proceedings of the 2009 ICTP Summer College on Plasma Physics and International Symposium on Cutting Edge Plasma Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3266792.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Mendonça, J. T., Padma K. Shukla, José Tito Mendonça, Bengt Eliasson i David Resedes. "Sound waves in ultra-cold matter". W INTERNATIONAL TOPICAL CONFERENCE ON PLASMA SCIENCE: Strongly Coupled Ultra-Cold and Quantum Plasmas. AIP, 2012. http://dx.doi.org/10.1063/1.3679584.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Godin, Oleg A. "Rayleigh scattering of spherical sound waves". W OCEANS 2011. IEEE, 2011. http://dx.doi.org/10.23919/oceans.2011.6106919.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Periago, Cristina, Arcadi Pejuan, Xavier Jaen i Xavier Bohigas. "Misconceptions about the propagation of sound waves". W 2009 EAEEIE Annual Conference. IEEE, 2009. http://dx.doi.org/10.1109/eaeeie.2009.5335478.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Pereselkov, Sergey A., Pavel V. Rybyanets, Elena S. Kaznacheeva, Mohsen Badiey i Venedikt M. Kuz'kin. "Broadband sound scattering by intense internal waves". W 2020 Days on Diffraction (DD). IEEE, 2020. http://dx.doi.org/10.1109/dd49902.2020.9274630.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Peplow, Andrew, Börje Nilsson, Börje Nilsson, Louis Fishman, Anders Karlsson i Sven Nordebo. "Acoustic waves in variable sound speed profiles". W MATHEMATICAL MODELING OF WAVE PHENOMENA: 3rd Conference on Mathematical Modeling of Wave Phenomena, 20th Nordic Conference on Radio Science and Communications. AIP, 2009. http://dx.doi.org/10.1063/1.3117088.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Katayama, M. "Comparison on the characteristics of natural sound of waves and imitation sound of waves in terms of comfort level". W Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492). IEEE, 2003. http://dx.doi.org/10.1109/oceans.2003.178471.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Aydogan, Hakan. "EEG response of different sound waves and frequencies". W 2016 24th Signal Processing and Communication Application Conference (SIU). IEEE, 2016. http://dx.doi.org/10.1109/siu.2016.7496212.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Powell, Alan. "Role of transitory waves in screech sound production". W 38th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-469.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Nakagawa, Y., W. Hou, A. Cai, N. Arnold i G. Wade. "Nonlinear Parameter Imaging with Finite-Amplitude Sound Waves". W IEEE 1986 Ultrasonics Symposium. IEEE, 1986. http://dx.doi.org/10.1109/ultsym.1986.198865.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Sound-waves"

1

Yargus, Michael W. Experimental Study of Sound Waves in Sandy Sediment. Fort Belvoir, VA: Defense Technical Information Center, maj 2003. http://dx.doi.org/10.21236/ada422568.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Buckingham, Michael J. Spatial Statistics of Deep-Water Ambient Noise; Dispersion Relations for Sound Waves and Shear Waves. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2014. http://dx.doi.org/10.21236/ada618055.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Fabian, A. On Viscosity, Conduction and Sound Waves in the Intracluster Medium. Office of Scientific and Technical Information (OSTI), styczeń 2005. http://dx.doi.org/10.2172/839653.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Hamilton, Mark F. Problems in Nonlinear Acoustics: Rayleigh Waves, Pulsed Sound Beams, and Waveguides. Fort Belvoir, VA: Defense Technical Information Center, sierpień 1993. http://dx.doi.org/10.21236/ada274587.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Grigorieva, Natalie S., James Mercer, Jeffrey Simmen i Michael Wolfson. Near-Axial Interference Effects for Long-Range Sound Transmissions through Ocean Internal Waves. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2006. http://dx.doi.org/10.21236/ada612578.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Grigorieva, Natalie S., Gregory M. Fridman, James Mercer, Jeffrey Simmen, Rex Andrew i Michael Wolfson. Near-Axial Interference Effects for Long-Range Sound Transmissions through Ocean Internal Waves. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2008. http://dx.doi.org/10.21236/ada533094.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Grigorieva, Natalie S., James Mercer, Jeffrey Simmen i Michael Wolfson. Near-Axial Interference Effects for Long-Range Sound Transmissions through Ocean Internal Waves. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2007. http://dx.doi.org/10.21236/ada541759.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Wilson, D. K. Weak Scattering of Sound Waves in Random Media That Have Arbitrary Power-Law Spectra. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1999. http://dx.doi.org/10.21236/ada363637.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Haff, P. K. Microscopic modelling of sound waves in granular material: Quarterly progress report, January 1, 1989--March 31, 1989. Office of Scientific and Technical Information (OSTI), marzec 1989. http://dx.doi.org/10.2172/6182233.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Staroseisky, Alexander, Igor Fedchenia i Wenlong Li. Intensification of Transport Processes in Fluid-Filled Porous Media by Sound Waves. Application to Fuel Cell Technology. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2004. http://dx.doi.org/10.21236/ada420039.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii