Gotowa bibliografia na temat „Sound transmission loss sound radiation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Sound transmission loss sound radiation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Sound transmission loss sound radiation"
Suga, Hiromi, i Hideki Tachibana. "Sound Radiation Characteristics of Lightweight Roof Constructions Excited by Rain". Building Acoustics 1, nr 4 (grudzień 1994): 249–70. http://dx.doi.org/10.1177/1351010x9400100401.
Pełny tekst źródłaKUROSAWA, Yoshio, Taichi TSUNEKI, Tsuyoshi YAMASHITA, Tetsuya OZAKI, Yuki FUJITA, Taro MUSHIAKE, Manabu TAKAHASHI i Naoyuki NAKAIZUMI. "Radiation Sound and Transmission Loss Analysis for Automotive Floor Carpet". Proceedings of the Dynamics & Design Conference 2020 (25.08.2020): 342. http://dx.doi.org/10.1299/jsmedmc.2020.342.
Pełny tekst źródłaKumar, Sathish, Leping Feng i Ulf Orrenius. "Predicting the Sound Transmission Loss of Honeycomb Panels using the Wave Propagation Approach". Acta Acustica united with Acustica 97, nr 5 (1.09.2011): 869–76. http://dx.doi.org/10.3813/aaa.918466.
Pełny tekst źródłaZhang, Tong, Ludi Kang, Xin Li, Hongbo Zhang i Bilong Liu. "Sound Transmission Prediction of Sandwich Plates With Honeycomb and Foam Cores and an Emphatic Discussion on Radiation Terms". International Journal of Acoustics and Vibration 26, nr 1 (30.03.2021): 70–79. http://dx.doi.org/10.20855/ijav.2020.25.11735.
Pełny tekst źródłaZhang, Rui, Desen Yang, Shengguo Shi i Boquan Yang. "Model approximation for sound transmission from underwater structures in high-frequency range". MATEC Web of Conferences 283 (2019): 09007. http://dx.doi.org/10.1051/matecconf/201928309007.
Pełny tekst źródłaChandra, N., S. Raja i K. V. N. Gopal. "A Comprehensive Analysis on the Structural–Acoustic Aspects of Various Functionally Graded Plates". International Journal of Applied Mechanics 07, nr 05 (październik 2015): 1550072. http://dx.doi.org/10.1142/s1758825115500726.
Pełny tekst źródłaMao, Jie, Zhi Yong Hao, Xin Rui Chen i Ji Yang. "The Application of SEA in Automobile Dash Sound Transmission Loss Numerical Calculation". Applied Mechanics and Materials 152-154 (styczeń 2012): 894–99. http://dx.doi.org/10.4028/www.scientific.net/amm.152-154.894.
Pełny tekst źródłaSEOK, JIN WAN, SUNG DAE NA, KI WOONG SEONG, JYUNG HYUN LEE i MYOUNG NAM KIM. "DEVELOPMENT OF A SUBMINIATURE PARAMETRIC TRANSDUCER FOR HEARING REHABILITATION". Journal of Mechanics in Medicine and Biology 19, nr 07 (listopad 2019): 1940041. http://dx.doi.org/10.1142/s0219519419400414.
Pełny tekst źródłaMao, Qi Bo. "Active Control of Sound Transmission Trough a Double Wall Structure". Applied Mechanics and Materials 138-139 (listopad 2011): 858–63. http://dx.doi.org/10.4028/www.scientific.net/amm.138-139.858.
Pełny tekst źródłaTalebitooti, R., MR Zarastvand i HD Gohari. "Investigation of power transmission across laminated composite doubly curved shell in the presence of external flow considering shear deformation shallow shell theory". Journal of Vibration and Control 24, nr 19 (5.09.2017): 4492–504. http://dx.doi.org/10.1177/1077546317727655.
Pełny tekst źródłaRozprawy doktorskie na temat "Sound transmission loss sound radiation"
Pavasovic, Vladimir, i vpavasovic@wmgacoustics com au. "The radiation of Sound from Surfaces at Grazing Angles of Incidence". RMIT University. Applied Sciences, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20060911.115939.
Pełny tekst źródłaCambridge, Jason Esan. "The Sound Insulation of Cavity Walls". Thesis, University of Canterbury. Mechanical Engineering, 2012. http://hdl.handle.net/10092/7332.
Pełny tekst źródłaRamanathan, Sathish Kumar. "The effects of damping treatment on the sound transmission loss of honeycomb panels". Licentiate thesis, KTH, MWL Structural and vibroacoustics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12514.
Pełny tekst źródłaIn the industry, all passenger vehicles are treated with damping materials to reduce structure-borne sound. Though these damping materials are effective to attenuate structure-borne sound, they have little or no effect on the air-borne sound transmission.The lack of effective predictive methods for assessing the acoustic effects due to added damping on complex industrial structures leads to excessive use of damping materials.Examples are found in the railway industry where sometimes the damping material applied per carriage is more than one ton. The objective of this thesis is to provide a better understanding of the application of these damping materials in particular when applied to lightweight sandwich panels.
As product development is carried out in a fast pace today, there is a strong need for validated prediction tools to assist in the design process. Sound transmission loss of sandwich plates with isotropic core materials can be accurately predicted by calculating the wave propagation in the structure. A modified wave propagation approach is used to predict the sound transmission loss of sandwich panels with honeycomb cores. The honeycomb panels are treated as being orthotropic and the wave numbers are calculated for the two principle directions. The orthotropic panel theory is used to predict the sound transmission loss of panels. Visco-elastic damping with a constraining layer is applied to these structures and the effect of these damping treatment on the sound transmission loss is studied. Measurements are performed to validate these predictions.
Sound radiated from vibrating structures is of great practical importance.The radiation loss factor represents damping associated with the radiation of sound as a result of the vibrating structure and can be a significant contribution for structures around the critical frequency and for composite structures that are very lightly damped. The influence of the radiation loss factor on the sound reduction index of such structures is also studied.
QC 20100519
ECO2-Multifunctional body Panels
Liu, Bilong. "Acoustical Characteristics of Aircraft Panels". Doctoral thesis, Stockholm, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4102.
Pełny tekst źródłaPhillips, Timothy Jason Nirmal. "Sound Transmission Loss of Sandwich Panels". Thesis, University of Canterbury. Department of Mechanical Engineering, 2012. http://hdl.handle.net/10092/9210.
Pełny tekst źródłaCowan, Andre James. "Sound Transmission Loss of Composite Sandwich Panels". Thesis, University of Canterbury. Mechanical Engineering, 2013. http://hdl.handle.net/10092/7879.
Pełny tekst źródłaHannink, Marieke Henriëtte Cathrien. "Acoustic resonators for the reduction of sound radiation and transmission". Enschede : University of Twente [Host], 2007. http://doc.utwente.nl/58025.
Pełny tekst źródłaSors, Thomas Christopher. "Active structural acoustic control of sound transmission through a plate". Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326822.
Pełny tekst źródłaWareing, Robin Richard. "Investigation and Prediction of the Sound Transmission Loss of Plywood Constructions". Thesis, University of Canterbury. Mechanical Engineering, 2015. http://hdl.handle.net/10092/10455.
Pełny tekst źródłaThomas, Ashwin Paul. "Simulated and laboratory models of aircraft sound transmission". Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52319.
Pełny tekst źródłaKsiążki na temat "Sound transmission loss sound radiation"
P, Gardonio, red. Sound and structural vibration: Radiation, transmission and response. Wyd. 2. Amsterdam: Elsevier/Academic, 2007.
Znajdź pełny tekst źródłaSound and structural vibration: Radiation, transmission, and response. London: Academic Press, 1985.
Znajdź pełny tekst źródłaRadiation acoustics. Boca Raton, FL: CRC Press, 2003.
Znajdź pełny tekst źródłaRudder, Fred F. Airborne sound transmission loss characteristics of wood-frame construction. Madison, WI: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1985.
Znajdź pełny tekst źródłaZali͡ubovskiĭ, Ilʹi͡a Ivanovich. Vvedenie v radiat͡sionnui͡u akustiku. Kharʹkov: Izd-vo pri Kharʹkovskom gos. universitete izdatelʹskogo obedinenii͡a "Vyshcha shkola", 1986.
Znajdź pełny tekst źródłaRadiat͡sionnai͡a akustika. Moskva: Nauka, 1996.
Znajdź pełny tekst źródłaMason, J. M. The use of acoustically tuned resonators to improve the sound transmisssion loss of double panel partitions. Southampton, England: University of Southampton, Institute of Sound and Vibration Research, 1986.
Znajdź pełny tekst źródłaHanish, S. A treatise on acoustic radiation. Wyd. 3. Washington, D.C: Naval Research Laboratory, 1989.
Znajdź pełny tekst źródłaHanish, S. A treatise on acoustic radiation. Wyd. 3. Washington, D.C: Naval Research Laboratory, 1989.
Znajdź pełny tekst źródłaVibrations and acoustic radiation of thin structures: Physical basis, theoretical analysis and numerical methods. Hoboken, N.J: ISTE/John Wiley, 2008.
Znajdź pełny tekst źródłaCzęści książek na temat "Sound transmission loss sound radiation"
Miles, Ronald N. "Sound Transmission Loss". W Mechanical Engineering Series, 53–82. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22676-3_3.
Pełny tekst źródłaNilsson, Anders, i Bilong Liu. "Sound Transmission Loss of Panels". W Vibro-Acoustics, Volume 2, 215–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47934-6_13.
Pełny tekst źródłaForeman, John E. K. "Absorption, Silencers, Room Acoustics, and Transmission Loss". W Sound Analysis and Noise Control, 110–63. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-6677-5_5.
Pełny tekst źródłaLu, Tianjian, i Fengxian Xin. "Sound Radiation, Transmission of Orthogonally Rib-Stiffened Sandwich Structures". W Springer Tracts in Mechanical Engineering, 225–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55358-5_5.
Pełny tekst źródłaLi, C., Z. Chen i Y. Jiao. "Study on Sound Transmission Loss of Lightweight FGM Sandwich Plate". W Computational and Experimental Simulations in Engineering, 1317–28. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27053-7_111.
Pełny tekst źródłaWang, Xiufeng, i Jie Shi. "Research of Acoustic Parts in Vehicle Sound Transmission Loss Test Method". W Lecture Notes in Electrical Engineering, 645–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33832-8_52.
Pełny tekst źródłaTan, W. H., A. S. N. Amirah, S. Ragunathan, N. A. N. Zainab, A. M. Andrew i W. Faridah. "Development a Cost-Effective Impedance Tube for Sound Transmission Loss Measurement". W Lecture Notes in Mechanical Engineering, 1217–26. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0866-7_107.
Pełny tekst źródłaSoussi, Chaima, Walid Larbi i Jean-François Deü. "Experimental and Numerical Analysis of Sound Transmission Loss Through Double Glazing Windows". W Applied Condition Monitoring, 195–203. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94616-0_20.
Pełny tekst źródłaOnbaşlı, Mehmet C. "Design and Modeling of High-Strength, High-Transmission Auto Glass with High Sound Transmission Loss". W Handbook of Materials Modeling, 1–18. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-50257-1_101-1.
Pełny tekst źródłaOnbaşlı, Mehmet C. "Design and Modeling of High-Strength, High-Transmission Auto Glass with High Sound Transmission Loss". W Handbook of Materials Modeling, 2091–108. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-44680-6_101.
Pełny tekst źródłaStreszczenia konferencji na temat "Sound transmission loss sound radiation"
Santoni, Andrea, Paolo Bonfiglio, Patrizio Fausti i Stefan Schoenwald. "Predicting sound radiation efficiency and sound transmission loss of orthotropic cross-laminated timber panels". W 173rd Meeting of Acoustical Society of America and 8th Forum Acusticum. Acoustical Society of America, 2017. http://dx.doi.org/10.1121/2.0000626.
Pełny tekst źródłaHawwa, Muhammad A., i Ali H. Nayfeh. "Control of Structure-Borne Sound Using Periodically Varying Rigidity". W ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0419.
Pełny tekst źródłaMir, Fariha, i Sourav Banerjee. "Performance of a Multifunctional Spiral Shaped Acoustic Metamaterial With Synchronized Low-Frequency Noise Filtering and Energy Harvesting Capability". W ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/smasis2020-2264.
Pełny tekst źródłaGesch, E., R. E. Wentzel i C. Riedel. "Controlled Angle Sound Transmission Loss Experiment". W SAE 2003 Noise & Vibration Conference and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2003. http://dx.doi.org/10.4271/2003-01-1630.
Pełny tekst źródłaWentzel, Richard E., i Pranab Saha. "Empirically Predicting the Sound Transmission Loss of Double-Wall Sound Barrier Assemblies". W SAE Noise and Vibration Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/951268.
Pełny tekst źródłaLeite, Pierre, Marc Thomas, Frank Simon i Yves Bréchet. "Optimal Design of an Asymmetrical Sandwich Panel for Acoustical and Mechanical Properties". W ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82504.
Pełny tekst źródłaDinsmore, Michael L. "SAE J1400 Sound Transmission Loss Round Robin Results". W SAE 2005 Noise and Vibration Conference and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-2438.
Pełny tekst źródłaWang, Chong, i Alan Parrett. "Damping Mass Effects on Panel Sound Transmission Loss". W SAE 2011 Noise and Vibration Conference and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2011. http://dx.doi.org/10.4271/2011-01-1633.
Pełny tekst źródłaXie, Shi-lin, i Sheng-jiang Liu. "Sound transmission loss characteristics of single corrugated panel". W 2010 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA 2010). IEEE, 2010. http://dx.doi.org/10.1109/spawda.2010.5744296.
Pełny tekst źródłaTracey, Brian H., i Liangyu (Mike) Huang. "Transmission Loss for Vehicle Sound Packages with Foam Layers". W Noise & Vibration Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-1670.
Pełny tekst źródłaRaporty organizacyjne na temat "Sound transmission loss sound radiation"
Rudder, Fred F. Airborne sound transmission loss characteristics of woodframe construction. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 1985. http://dx.doi.org/10.2737/fpl-gtr-43.
Pełny tekst źródłaSun, Xin, Kevin L. Simmons i Mohammad A. Khaleel. Characterization of Sound Transmission Loss of Laminated Glass with Analytical and Experimental Approaches. Office of Scientific and Technical Information (OSTI), listopad 2005. http://dx.doi.org/10.2172/883220.
Pełny tekst źródłaHart, Carl R., D. Keith Wilson, Chris L. Pettit i Edward T. Nykaza. Machine-Learning of Long-Range Sound Propagation Through Simulated Atmospheric Turbulence. U.S. Army Engineer Research and Development Center, lipiec 2021. http://dx.doi.org/10.21079/11681/41182.
Pełny tekst źródłaPettit, Chris, i D. Wilson. A physics-informed neural network for sound propagation in the atmospheric boundary layer. Engineer Research and Development Center (U.S.), czerwiec 2021. http://dx.doi.org/10.21079/11681/41034.
Pełny tekst źródła