Gotowa bibliografia na temat „Sound, light and Heat”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Sound, light and Heat”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Sound, light and Heat"
Ladbury, Ray. "Sound from Sunspots Generates Heat As Well As Light". Physics Today 49, nr 4 (kwiecień 1996): 20–22. http://dx.doi.org/10.1063/1.2807577.
Pełny tekst źródłaOehler, Oscar. "Sound, heat and light: photoacoustic and photothermal detection of gases". Sensor Review 15, nr 3 (wrzesień 1995): 14–16. http://dx.doi.org/10.1108/02602289510795923.
Pełny tekst źródłaChoi, Hyeung Sik, Hee Young Shin, Ji Youn Oh, Tae Woo Lim i Yun Hae Kim. "Temperature Regulation for LED Lamps Using Fans". Advanced Materials Research 753-755 (sierpień 2013): 1931–38. http://dx.doi.org/10.4028/www.scientific.net/amr.753-755.1931.
Pełny tekst źródłaThomas, R. L., i L. D. Favro. "From Photoacoustic Microscopy to Thermal-Wave Imaging". MRS Bulletin 21, nr 10 (październik 1996): 47–52. http://dx.doi.org/10.1557/s088376940003164x.
Pełny tekst źródłaJones, Christopher D., i Jonathan W. Steed. "Gels with sense: supramolecular materials that respond to heat, light and sound". Chemical Society Reviews 45, nr 23 (2016): 6546–96. http://dx.doi.org/10.1039/c6cs00435k.
Pełny tekst źródłaStrang, David. "Sensitive Chaos". Leonardo 48, nr 3 (czerwiec 2015): 286–87. http://dx.doi.org/10.1162/leon_a_01012.
Pełny tekst źródłaDannecker, E., B. McLay i R. Fillingim. "Effects of induced muscle pain on responses to light, sound, heat, and exercise". Journal of Pain 12, nr 4 (kwiecień 2011): P7. http://dx.doi.org/10.1016/j.jpain.2011.02.028.
Pełny tekst źródłaGolubkov, A. V., L. S. Parfen’eva, I. A. Smirnov, D. Wlosewicz, H. Misiorek, J. Mucha, A. Jezowski, A. I. Krivchikov, G. A. Zvyagina i I. B. Bilich. "Heat capacity and velocity of sound in the YbMgCu4 “light” heavy-fermion system". Physics of the Solid State 49, nr 11 (listopad 2007): 2042–46. http://dx.doi.org/10.1134/s1063783407110042.
Pełny tekst źródłaGosselin, M., L. Legendre, S. Demers i R. G. Ingram. "Responses of Sea-Ice Microalgae to Climatic and Fortnightly Tidal Energy Inputs (Manitounuk Sound, Hudson Bay)". Canadian Journal of Fisheries and Aquatic Sciences 42, nr 5 (1.05.1985): 999–1006. http://dx.doi.org/10.1139/f85-125.
Pełny tekst źródłaAdlington, Robert. "Moving Beyond Motion: Metaphors for Changing Sound". Journal of the Royal Musical Association 128, nr 2 (2003): 297–318. http://dx.doi.org/10.1093/jrma/128.2.297.
Pełny tekst źródłaRozprawy doktorskie na temat "Sound, light and Heat"
Tang, Hsin-Yi. "Changes on physiologic and cognitive functioning through light/sound stimulation in older adults : a mind/body connection /". Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/7216.
Pełny tekst źródłaHart, Charles J. "Architecture of light and sound". Thesis, This resource online, 1997. http://scholar.lib.vt.edu/theses/available/etd-09092008-063818/.
Pełny tekst źródłaDai, Hin Man. "Light weight low frequency sound focus lens /". View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?PHYS%202005%20DAI.
Pełny tekst źródłaGiddens, Eric M. "Geoacoustic inversions using sound from light aircraft /". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2005. http://wwwlib.umi.com/cr/ucsd/fullcit?p3171115.
Pełny tekst źródłaMenchon, Enrich Ricard. "Spatial adiabatic passage: light, sound and matter waves". Doctoral thesis, Universitat Autònoma de Barcelona, 2013. http://hdl.handle.net/10803/129476.
Pełny tekst źródłaThe birth of Quantum Mechanics provided a theoretical framework that could explain some previously experimentally reported phenomena, such as the black body radiation, the photoelectric effect or the spectral lines of atomic gases, and also allowed for a better understanding of fundamental aspects related to the wave-particle duality and the interaction between radiation and matter. Quantum Mechanics has been also the origin of more specific disciplines such as Quantum Optics or Quantum Information science, which are partially devoted to a more applied research field that is known as Quantum Engineering. In this context, adiabatic passage processes consisting in the adiabatic following of an eigenstate of the system, which allows for a very robust and efficient control of the population transfer between two asymptotic states have been proposed. As many other processes in Quantum Mechanics, adiabatic passage processes are purely oscillatory and can be extended to other non-quantum physical systems, which also support oscillating quantities. In this thesis, spatial adiabatic passage processes are addressed in different oscillatory physical systems to control light, sound and matter waves propagation in systems of coupled waveguides, and the transfer of single cold atoms in harmonic potentials. Additionally, we make use of the robustness and high efficiency of the adiabatic passage to propose new devices and discuss new implementations in these various fields. To be specific, we experimentally demonstrate the spatial adiabatic passage of light in a system of three evanescent-coupled CMOS-compatible silicon oxide TIR waveguides, which consists in a complete transfer of light intensity between the outermost waveguides of the system. The advantage of using spatial adiabatic passage compared to standard directional couplers is that the light transfer is robust in front of technological fluctuations and does not depend on precise parameter values. Additionally, this is the first spatial adiabatic passage of light device fabricated in CMOS-compatible technology, which allows for massive and low cost integration. Furthermore, we also experimentally show that this system of coupled waveguides behaves as a simultaneously low- and high-pass spectral filter, with features that makes it an alternative to other integrated filters like interferenceñbased and absorbance-based filters. In addition, we address the spatial adiabatic passage of sound waves in systems of two coupled linear defects in sonic crystals. By calculating the band diagrams to analyze the available supermodes of the system and modifying the geometry of the linear defects along the propagation distance appropriately, we design devices working as a multifrequency adiabatic splitter, as a coupler and also as a phase difference analyser. Furthermore, we discuss a novel method to inject, extract and velocity filter neutral atoms in a ring trap via a spatial adiabatic passage process by using two extra waveguides. The proposal is based on the adiabatic following of a transversal eigenstate of the system. Semianalytical calculations are performed, which perfectly match with the results of the numerical integration of the Schrˆdinger equation. We also show that our proposal could be experimentally implemented for realistic state-of-the-art parameters of ultracold atoms in optical dipole potentials. Finally, we study the spatial adiabatic passage of a single cold atom in two-dimensional triple-well potentials, going beyond the well-understood effective one-dimensional systems and studying the possibilities arising from the additional degrees of freedom. On the one hand, a system of three coupled identical harmonic potentials with the traps lying in a triangular configuration is proposed for matter wave interferometry taking profit of a level crossing appearing in the energy spectrum. On the other hand, angular momentum is successfully generated in a similar configuration where the three harmonic traps have different trapping frequencies by simultaneously following two eigenstates of the system.
Woodbury, Patricia Powell. "Students with autism: A light/sound technology intervention". W&M ScholarWorks, 1996. https://scholarworks.wm.edu/etd/1539618724.
Pełny tekst źródłaHedfors, Per. "Site soundscapes : landscape architecture in the light of sound /". Uppsala : Dept. of Landscape Planning Ultuna, Swedish Univ. of Agricultural Sciences, 2003. http://epsilon.slu.se/a407.pdf.
Pełny tekst źródłaHussaini, Muzhgan. "Luminous Land of Phon". Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/91402.
Pełny tekst źródłaMaster of Architecture
The architecture is a school of Architecture and Landscape architecture consisting of a full scale natural water pool underneath the building, Gallery and shop space under the pool, studio spaces, class rooms, faculty offices, cafeteria, and ceremony halls for the University of the District of Columbia at its Van Ness Campus sited at the Connecticut Ave, NW Washington D.C. The thesis is an exploration of the concept of bringing nature into architecture and a formal study of their harmony with each other, Architecture, structure and construction of the building.
Csinos, David M. "Light Art, Street Art, and the Art of Preaching: Sound-and-Light Shows as Public Proclamation". Universität Leipzig, 2020. https://ul.qucosa.de/id/qucosa%3A72283.
Pełny tekst źródłaThompson, Andrew. "Light Sensitive". CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/245.
Pełny tekst źródłaKsiążki na temat "Sound, light and Heat"
Learning about heat, light, and sound. [Place of publication not identified]: Holt Mcdougal, 2009.
Znajdź pełny tekst źródłaill, DiVito Anna, red. Sound, heat & light: Energy at work. New York: Scholastic Inc., 1992.
Znajdź pełny tekst źródłaHoover, Evalyn. Primarily physics: Investigations in sound, light and heat for K-3. Redaktorzy Hillen Judith, Mercier Sheryl, Larimer Howard, Adler Karen, Walsh Mike, Pocock Margo, Huff G. Bradley i AIMS Education Foundation. Fresno, Calif: AIMS Education Foundation, 1994.
Znajdź pełny tekst źródłaHsp. Heat/light/sound, below-level reader grade 1: Harcourt school publishers science. [Place of publication not identified]: Holt Mcdougal, 2004.
Znajdź pełny tekst źródłaIsaac Asimov. Understanding physics: 3 volumes in 1: Motion, sound, and heat; Light, magnetism, and electricity; The electron,proton, and neutron. New York: Barnes & Noble, 1993.
Znajdź pełny tekst źródłaVanCleave, Janice Pratt. Janice VanCleave's physics for every kid: 101 easy experiments in motion, heat, light, machines, and sound. New York: Wiley, 1991.
Znajdź pełny tekst źródłaCompany, Macmillan/McGraw-Hill School Publishing, red. Energy and you: Teacher's anthology with classroom library lessons. New York: Macmillan/McGraw-Hill School Pub. Co., 1995.
Znajdź pełny tekst źródłaAtwater, Mary. Energy and you. New York: Macmillan/McGraw-Hill School Pub. Co., 1995.
Znajdź pełny tekst źródłaAtwater, Mary. Energy and you. New York: Macmillan/McGraw-Hill School Pub. Co., 1995.
Znajdź pełny tekst źródłaSangster, John Herbert. Natural philosophy: Part I, including statics, hydrostatics, pneumatics, dynamics, hydrodynamics, the general theory of undulations, the science of sound, the mechanical theory of music, etc. : designed for the use of normal and grammar schools, and the higher classes in common schools. Montreal: J. Lovell, 1991.
Znajdź pełny tekst źródłaCzęści książek na temat "Sound, light and Heat"
Brenig, Wilhelm. "Zero Sound". W Statistical Theory of Heat, 177–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74685-7_35.
Pełny tekst źródłaIsabelle, Aaron D., i Gilbert A. Zinn. "Light & Sound". W STEPS to STEM, 225–60. Rotterdam: SensePublishers, 2017. http://dx.doi.org/10.1007/978-94-6300-791-7_7.
Pełny tekst źródłaIsabelle, Aaron D., i Gilbert A. Zinn. "Light & Sound". W Sci-Book, 185–214. Rotterdam: SensePublishers, 2017. http://dx.doi.org/10.1007/978-94-6300-794-8_7.
Pełny tekst źródłaKruppa, Boris, Gernoth Strube i Christof Gerlach. "Light Scattering". W Heat and Mass Transfer, 99–116. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56443-7_7.
Pełny tekst źródłaWestphal, Laurie E. "Waves, Light, and Sound". W Hands-On PHYSICAL SCIENCE GRADES 6-8, 33–62. Wyd. 2. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003235491-5.
Pełny tekst źródłaKuball, Mischa. "res·o·nant light / sound / public". W andererseits - Yearbook of Transatlantic German Studies, 227–38. Bielefeld, Germany: transcript Verlag, 2021. http://dx.doi.org/10.14361/9783839461280-019.
Pełny tekst źródłaKruppa, Boris, Martin Pitschmann i Johannes Straub. "Dynamic Light Scattering". W Heat and Mass Transfer, 153–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56443-7_10.
Pełny tekst źródłaStrawser, Bradley Jay. "More Heat Than Light". W Opposing Perspectives on the Drone Debate, 5–18. New York: Palgrave Macmillan US, 2014. http://dx.doi.org/10.1057/9781137432636_2.
Pełny tekst źródłaPopa, Mircea, Ioan Sava, Marin Petre, Cătălin Ducu, Sorin Moga, Alexandra-Valerica Nicola i Constantin-Nicușor Drăghici. "Coupled Fluid Flow and Heat Transfer Analysis of Ageing Heat Furnace". W Light Metals 2019, 279–84. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05864-7_36.
Pełny tekst źródłaKnop, Andre, i Louis A. Pilato. "Heat and Sound Insulation Materials". W Phenolic Resins, 213–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-02429-4_13.
Pełny tekst źródłaStreszczenia konferencji na temat "Sound, light and Heat"
MacDonald, Kevin F., Jinxiang Li, Tongjun Liu, Jun-Yu Ou, Domitrios Papas, Eric Plum i Nikolay I. Zheludev. "Metamaterial nanomachines driven by heat, sound, electric and magnetic fields, and light". W Metamaterials, Metadevices, and Metasystems 2021, redaktorzy Nader Engheta, Mikhail A. Noginov i Nikolay I. Zheludev. SPIE, 2021. http://dx.doi.org/10.1117/12.2594665.
Pełny tekst źródłaAnishchenko, Vadim S. "Synchronization of heart rate by sound and light pulses". W Stochastic and chaotic dynamics in the lakes. AIP, 2000. http://dx.doi.org/10.1063/1.1302380.
Pełny tekst źródłaCukurel, Beni, Claudio Selcan i Judah Shashank. "Development of an Experimental Facility Towards Sound Excitation Effects on Forced Convection Heat Transfer". W ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/esda2014-20280.
Pełny tekst źródłaBalan, Oana, Alin Moldoveanu, Florica Moldoveanu, Ionut Negoi i Alex Butean. "COMPARATIVE RESEARCH ON SOUND LOCALIZATION ACCURACY IN THE FREE-FIELD AND VIRTUAL AUDITORY DISPLAYS". W eLSE 2015. Carol I National Defence University Publishing House, 2015. http://dx.doi.org/10.12753/2066-026x-15-079.
Pełny tekst źródłaFakhry, Mahmoud, i Ascensión Gallardo-Antolín. "Variational Mode Decomposition and a Light CNN-LSTM Model for Classification of Heart Sound Signals". W IEEE EUROCON 2023 - 20th International Conference on Smart Technologies. IEEE, 2023. http://dx.doi.org/10.1109/eurocon56442.2023.10199054.
Pełny tekst źródłaFrid, Emma, Michele Orini, Giampaolo Martinelli i Elaine Chew. "Mapping Inter-Cardiovascular Time-Frequency Coherence to Harmonic Tension in Sonification of Ensemble Interaction Between a Covid-19 Patient and the Medical Team". W ICAD 2021: The 26th International Conference on Auditory Display. icad.org: International Community for Auditory Display, 2021. http://dx.doi.org/10.21785/icad2021.020.
Pełny tekst źródłaKontani, Osamu, Shohei Sawada, Ippei Maruyama, Masayuki Takizawa i Osamu Sato. "Evaluation of Irradiation Effects on Concrete Structure: Gamma-Ray Irradiation Tests on Cement Paste". W ASME 2013 Power Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/power2013-98099.
Pełny tekst źródłaIto, Teruaki, Eiichi Honda, Tetsuo Ichikawa, Yosuke Kinouchi, Masatake Akutagawa, Takahiro Emoto i Midori Yoshida. "1/F Noise-Fluctuated Cozy Lighting System for Concentration Improvement". W ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34335.
Pełny tekst źródłaDickson, T. L., i M. T. EricksonKirk. "Risk-Based Fracture Evaluation of Reactor Vessels Subjected to Cool-Down Transients Associated With Shutdown: An Examination of the Effects of Different Modeling Approaches on Estimated Failure Probabilities". W ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93813.
Pełny tekst źródłaRoberts, Charles. "Sound-Light Giblet". W MM '14: 2014 ACM Multimedia Conference. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2647868.2655618.
Pełny tekst źródłaRaporty organizacyjne na temat "Sound, light and Heat"
Heremans, Joseph. Magnetic Fields Can Control Heat and Sound. Fort Belvoir, VA: Defense Technical Information Center, marzec 2015. http://dx.doi.org/10.21236/ada614068.
Pełny tekst źródłaRutledge, Annamarie, i Leslie (Leslie Alyson) Brandt. Puget Sound Region. Houghton, MI: USDA Northern Forests Climate, czerwiec 2023. http://dx.doi.org/10.32747/2023.8054016.ch.
Pełny tekst źródłaAdhvaryu, Achyuta, Namrata Kala i Anant Nyshadham. The Light and the Heat: Productivity Co-benefits of Energy-saving Technology. Cambridge, MA: National Bureau of Economic Research, luty 2018. http://dx.doi.org/10.3386/w24314.
Pełny tekst źródłaIm, Piljae, Heather Buckberry, Anthony C. Gehl i Kris Jorgenson. Final Report Demonstration of Micro-Combined Heat and Power for Light Commercial Applications. Office of Scientific and Technical Information (OSTI), wrzesień 2019. http://dx.doi.org/10.2172/1569378.
Pełny tekst źródłaRobert D. Pehlke i John T. Berry. Investigation of Heat Transfer at the Mold/Metal Interface in Permanent Mold Casting of Light Alloys. Office of Scientific and Technical Information (OSTI), grudzień 2005. http://dx.doi.org/10.2172/861448.
Pełny tekst źródłaSalas Cano, Conrado. Comparison of Heat Output and Microchemical Changes of Palladium Cathodes under Electrolysis in Acidified Light and Heavy Water. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.6500.
Pełny tekst źródłaLundin, C. D., i S. Mohammed. Effect of welding conditions on transformation and properties of heat-affected zones in LWR (light-water reactor) vessel steels. Office of Scientific and Technical Information (OSTI), listopad 1990. http://dx.doi.org/10.2172/6337784.
Pełny tekst źródłaHacke, P., K. Terwilliger i S. Kurtz. In-Situ Measurement of Crystalline Silicon Modules Undergoing Potential-Induced Degradation in Damp Heat Stress Testing for Estimation of Low-Light Power Performance. Office of Scientific and Technical Information (OSTI), sierpień 2013. http://dx.doi.org/10.2172/1090973.
Pełny tekst źródłaJohra, Hicham. Performance overview of caloric heat pumps: magnetocaloric, elastocaloric, electrocaloric and barocaloric systems. Department of the Built Environment, Aalborg University, styczeń 2022. http://dx.doi.org/10.54337/aau467469997.
Pełny tekst źródłaHalevy, Orna, Zipora Yablonka-Reuveni i Israel Rozenboim. Enhancement of meat production by monochromatic light stimuli during embryogenesis: effect on muscle development and post-hatch growth. United States Department of Agriculture, czerwiec 2004. http://dx.doi.org/10.32747/2004.7586471.bard.
Pełny tekst źródła