Gotowa bibliografia na temat „Solvation Dynamics - Biological Water”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Solvation Dynamics - Biological Water”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Solvation Dynamics - Biological Water"
Cao, Simin, Haoyang Li, Zenan Zhao, Sanjun Zhang, Jinquan Chen, Jianhua Xu, Jay R. Knutson i Ludwig Brand. "Ultrafast Fluorescence Spectroscopy via Upconversion and Its Applications in Biophysics". Molecules 26, nr 1 (3.01.2021): 211. http://dx.doi.org/10.3390/molecules26010211.
Pełny tekst źródłaRen, Pengyu, Jaehun Chun, Dennis G. Thomas, Michael J. Schnieders, Marcelo Marucho, Jiajing Zhang i Nathan A. Baker. "Biomolecular electrostatics and solvation: a computational perspective". Quarterly Reviews of Biophysics 45, nr 4 (listopad 2012): 427–91. http://dx.doi.org/10.1017/s003358351200011x.
Pełny tekst źródłaNandi, Nilashis, Kankan Bhattacharyya i Biman Bagchi. "Dielectric Relaxation and Solvation Dynamics of Water in Complex Chemical and Biological Systems". Chemical Reviews 100, nr 6 (czerwiec 2000): 2013–46. http://dx.doi.org/10.1021/cr980127v.
Pełny tekst źródłaTrofimov, Yury A., Nikolay A. Krylov i Roman G. Efremov. "Confined Dynamics of Water in Transmembrane Pore of TRPV1 Ion Channel". International Journal of Molecular Sciences 20, nr 17 (1.09.2019): 4285. http://dx.doi.org/10.3390/ijms20174285.
Pełny tekst źródłaSasmal, Dibyendu Kumar, Shirsendu Ghosh, Atanu Kumar Das i Kankan Bhattacharyya. "Solvation Dynamics of Biological Water in a Single Live Cell under a Confocal Microscope". Langmuir 29, nr 7 (4.02.2013): 2289–98. http://dx.doi.org/10.1021/la3043473.
Pełny tekst źródłaKarataraki, Georgia, Andreas Sapalidis, Elena Tocci i Anastasios Gotzias. "Molecular Dynamics of Water Embedded Carbon Nanocones: Surface Waves Observation". Computation 7, nr 3 (10.09.2019): 50. http://dx.doi.org/10.3390/computation7030050.
Pełny tekst źródłaNandi, Nilashis, Kankan Bhattacharyya i Biman Bagchi. "ChemInform Abstract: Dielectric Relaxation and Solvation Dynamics of Water in Complex Chemical and Biological Systems". ChemInform 31, nr 34 (3.06.2010): no. http://dx.doi.org/10.1002/chin.200034290.
Pełny tekst źródłaPokharel, Sunil, Shyam Prakash Khanal i N. P. Adhikari. "Solvation free energy of light alkanes in polar and amphiphilic environments". BIBECHANA 16 (22.11.2018): 92–105. http://dx.doi.org/10.3126/bibechana.v16i0.21136.
Pełny tekst źródłaBrahma, Rupasree, i H. Raghuraman. "Novel insights in linking solvent relaxation dynamics and protein conformations utilizing red edge excitation shift approach". Emerging Topics in Life Sciences 5, nr 1 (8.01.2021): 89–101. http://dx.doi.org/10.1042/etls20200256.
Pełny tekst źródłaGrotz, Kara K., i Nadine Schwierz. "Magnesium force fields for OPC water with accurate solvation, ion-binding, and water-exchange properties: Successful transfer from SPC/E". Journal of Chemical Physics 156, nr 11 (21.03.2022): 114501. http://dx.doi.org/10.1063/5.0087292.
Pełny tekst źródłaRozprawy doktorskie na temat "Solvation Dynamics - Biological Water"
Kropman, Michel François. "Ion solvation in water femtosecond spectroscopy of hydrogen-bond dynamics /". [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2004. http://dare.uva.nl/document/74586.
Pełny tekst źródłaSedlmeier, Felix [Verfasser], Roland [Akademischer Betreuer] Netz i Martin [Akademischer Betreuer] Zacharias. "Water: Structure, dynamics and solvation / Felix Sedlmeier. Gutachter: Martin Zacharias. Betreuer: Roland Netz". München : Universitätsbibliothek der TU München, 2011. http://d-nb.info/1019589744/34.
Pełny tekst źródłaSpångberg, Daniel. "Cation Solvation in Water and Acetonitrile from Theoretical Calculations". Doctoral thesis, Uppsala University, Department of Materials Chemistry, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3598.
Pełny tekst źródłaMetal ions solvated in aqueous, non-aqueous, and mixtures of solvents occur in many chemical contexts, for example in electrochemical applications and solvent separation. Solvated ions appear in high concentration in the living organisms, where their presence or absence can fundamentally alter the functions of life. In many of these cases, understanding the selective solvation and the dynamics of the ions is essential for the understanding of the processes involved.
Computer simulation provides a molecular level of detail of the solvation process usually not available from experiments. The quality of the interaction models employed in the theoretical description is of particular importance, since even rather small changes in the interaction can lead to substantial and qualitative differences.
This thesis describes the development of a sequence of increasingly refined analytical ion-solvent potentials from ab initio calculations for the systems Li+(aq), Na+(aq), Mg2+(aq), Al3+(aq), Li+(MeCN), Na+(MeCN), Li+(aq, MeCN), and Na+(aq, MeCN). Molecular dynamics simulations using these potentials were subsequently performed, and some key-properties computed. The reliability of the computed thermodynamical, structural and dynamical properties was scrutinized.
Yang, Jin. "Ultrafast Protein Hydration Dynamics and Water-Protein Interactions". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1480668103383892.
Pełny tekst źródłaChung, Ying-Hua. "Water behavior in different biological environments". Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/1213.
Pełny tekst źródłaLi, Tanping. "The Coupled Water-Protein Dynamics within Hydration Layer surrounding Protein and Semiclassical Approximation for Optical Response Funtion". The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1312484867.
Pełny tekst źródłaGaither, Scott P. "Biological Water: A Brief Review of Hydration Dynamics using Complex Systems". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1532015941319059.
Pełny tekst źródłaFeakes, Karl Anthony. "The distribution and population dynamics of Corixidae". Thesis, University of Salford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308132.
Pełny tekst źródłaDlamini, Musa V. "Short-Term Water Use Dynamics in Drainage Lysimeters". DigitalCommons@USU, 2003. https://digitalcommons.usu.edu/etd/5877.
Pełny tekst źródłaMcCracken, Justine M. (Justine Meghan) 1979. "Hydrogen bonding and solvation dynamics of n-methylacetamide in denatured water (D₂O) or denatured chloroform (CDCl₃) from nonlinear spectroscopy". Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28314.
Pełny tekst źródłaVita.
Includes bibliographical references (p. 34-35).
Hydrogen bonding between N-methylacetamide (NMA) and different solvents (D₂O or CDCl₃) was studied by using two-dimensional infrared spectroscopy to probe the frequency fluctuations of the amide I mode of the solvated NMA. An iterative fitting approach was used to extract a correlation function from the experimental data. The correlation function for NMA/D₂O was found to be biexponential with decay constants of 1050 fs and [approximately]50 fs. These timescales are interpreted as reflecting the collective rearrangement of the solution hydrogen bonding network and oscillation of the hydrogen bond bound to the NMA molecule respectively. The correlation function for NMA/CDCl₃ was found to decay on three timescales with two decay constants of 1600 fs and [approximately]50 fs, and a long time quasi-inhomogeneous component.
by Justine M. McCracken.
S.M.
Książki na temat "Solvation Dynamics - Biological Water"
Erik, Mortensen, red. Nutrient dynamics and biological structure in shallow freshwater and brackish lakes. Dordrecht: Kluwer Academic Publishers, 1994.
Znajdź pełny tekst źródłaBagchi, Biman. Water in Biological and Chemical Processes: From Structure and Dynamics to Function. Cambridge University Press, 2013.
Znajdź pełny tekst źródłaCostard, René. Ultrafast Dynamics of Phospholipid-Water Interfaces: Studied by Nonlinear Time-Resolved Vibrational Spectroscopy. Springer, 2016.
Znajdź pełny tekst źródłaCostard, René. Ultrafast Dynamics of Phospholipid-Water Interfaces: Studied by Nonlinear Time-Resolved Vibrational Spectroscopy. Springer, 2015.
Znajdź pełny tekst źródłaCostard, René. Ultrafast Dynamics of Phospholipid-Water Interfaces: Studied by Nonlinear Time-Resolved Vibrational Spectroscopy. Springer, 2015.
Znajdź pełny tekst źródła(Editor), E. Mortensen, E. Jeppesen (Editor), M. Søndergaard (Editor) i L. Kamp Nielsen (Editor), red. Nutrient Dynamics and Biological Structure in Shallow Freshwater and Brackish Lakes (Developments in Hydrobiology). Wyd. 2. Springer, 2007.
Znajdź pełny tekst źródłaHussain, Shaukat. Effect of soil water pressures on population dynamics of Fusarium equiseti, Glocladium virens, Talaromyces flavus and Trichoderma viride, biocontrol agents of Verticillium dahliae in potatoes. 1994.
Znajdź pełny tekst źródłaNitzan, Abraham. Chemical Dynamics in Condensed Phases. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780198529798.001.0001.
Pełny tekst źródłaPont Evksinskiy – 2021 : materials of XII All-Russian scientific and applied conference for young scientists on the water systems problems, dedicated to the 150 th anniversary of the Sevastopol Biological Station ‒ A. O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Sevastopol, 20–24 September, 2021. IBSS, 2021. http://dx.doi.org/10.21072/978-5-6044865-8-0.
Pełny tekst źródłaLaurent, Julien, Randal Samstag, Jim Wicks i Ingmar Nopens, red. CFD Modelling for Wastewater Treatment Processes. IWA Publishing, 2022. http://dx.doi.org/10.2166/9781780409030.
Pełny tekst źródłaCzęści książek na temat "Solvation Dynamics - Biological Water"
Ben-Naim, A. "Solvation Thermodynamics of Biopolymers". W Water and Biological Macromolecules, 430–59. London: Macmillan Education UK, 1993. http://dx.doi.org/10.1007/978-1-349-12359-9_14.
Pełny tekst źródłaKropman, Michel F., Han-Kwang Nienhuys i Huib J. Bakker. "Dynamics of water in ionic solvation shells". W Ultrafast Phenomena XIII, 429–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59319-2_133.
Pełny tekst źródłaMarkovich, Gil, Stuart Pollack, Rina Giniger i Ori Cheshnovsky. "The Solvation of Halogen Anions in Water Clusters". W Reaction Dynamics in Clusters and Condensed Phases, 13–19. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0786-0_2.
Pełny tekst źródłaFernández, Ariel. "Epistructural Dynamics of Biological Water". W Physics at the Biomolecular Interface, 105–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30852-4_4.
Pełny tekst źródłaCamisasca, Gaia, Antonio Iorio, Lorenzo Tenuzzo i Paola Gallo. "Slow Dynamics of Biological Water". W Springer Proceedings in Physics, 29–52. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80924-9_2.
Pełny tekst źródłaResat, Haluk, Fernando O. Raineri, Baw-Ching Perng i Harold L. Friedman. "Temperature Dependence of Ion Solvation Dynamics in Liquid Water". W Hydrogen Bond Networks, 247–50. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8332-9_24.
Pełny tekst źródłaBeveridge, D. L., S. Swaminathan, G. Ravishanker, J. M. Withka, J. Srinivasan, C. Prevost, S. Louise-May, D. R. Langley, F. M. DiCapua i P. H. Bolton. "Molecular Dynamics Simulations on the Hydration, Structure and Motions of DNA Oligomers". W Water and Biological Macromolecules, 165–225. London: Macmillan Education UK, 1993. http://dx.doi.org/10.1007/978-1-349-12359-9_6.
Pełny tekst źródłaDemetropoulos, I. N., I. P. Gerothanassis i D. G. Papageorgiou. "The First Solvation Sphere of N-Methylformamide (NMF) in Water: MM2(87) Force Field and Ab Initio Studies". W Spectroscopy of Biological Molecules, 43–44. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0371-8_17.
Pełny tekst źródłaPerova, T. S., U. Rasmussen, O. F. Nielsen, S. A. Kirillov, D. H. Christensen i J. K. Vij. "Low-frequency studies and molecular dynamics of water/glycerol mixtures". W Spectroscopy of Biological Molecules: New Directions, 685–86. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4479-7_307.
Pełny tekst źródłaKirchner, Barbara, i Dominik Marx. "Hydrophobic Solvation in Liquid Water Via Car-Parrinello Molecular Dynamics: Progress and First Results". W High Performance Computing in Science and Engineering ’01, 228–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56034-7_22.
Pełny tekst źródłaStreszczenia konferencji na temat "Solvation Dynamics - Biological Water"
Martins, Bruna Nery, Allane C. C. Rodrigues, Arsênio P. V. Neto, Ademir J. Camargo i Heibbe C. B. de Oliveira. "Estudo dos efeitos da solvatação aquosa na norepinefrina usando Dinâmica Molecular de Car-Parrinello". W VIII Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Universidade de Brasília, 2020. http://dx.doi.org/10.21826/viiiseedmol2020104.
Pełny tekst źródłaOliveira, Osmair Vital de, Isabella Barros de Oliveira, Felipe Edilino de Lima i Rafael Giordano Viegas. "Encapsulation of the vitamins D3 and E in cucurbit[7]uril: A computational investigation". W VIII Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Universidade de Brasília, 2020. http://dx.doi.org/10.21826/viiiseedmol202066.
Pełny tekst źródłaKropman, Michel F., Han-Kwang Nienhuys i Huib J. Bakker. "Dynamics of water in ionic solvation shells". W International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/up.2002.md7.
Pełny tekst źródłaFainberg, B. D., B. Zolotov, A. Gan, S. Y. Goldberg i D. Huppert. "‘‘Population’’ transient four-photon spectroscopy of solvation dynamics". W The 54th international meeting of physical chemistry: Fast elementary processes in chemical and biological systems. AIP, 1996. http://dx.doi.org/10.1063/1.50158.
Pełny tekst źródłaLong, Frederick H., Hong Lu i Kenneth B. Eisenthal. "Femtosecond Studies of Electrons in Water". W International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/up.1990.wb3.
Pełny tekst źródłaEilers-König, N., T. Kühne, J. Schroeder, D. Schwarzer, J. Troe i P. Vöhringer. "Solvation dynamics of 4-(N,N-dimethylamino)-4ʹ-cyanostilbene in polar solvents". W The 54th international meeting of physical chemistry: Fast elementary processes in chemical and biological systems. AIP, 1996. http://dx.doi.org/10.1063/1.50162.
Pełny tekst źródłaKundu, Achintya, Shavkat I. Mamatkulov, Florian N. Brünig, Douwe Jan Bonthuis, Roland R. Netz, Thomas Elsaesser i Benjamin P. Fingerhut. "Short-Range Slowdown of Water Solvation Dynamics around SO42- - Mg2+ Ion Pairs". W International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/up.2022.f2a.2.
Pełny tekst źródłaPatawane, Sanwardhini, Shashank Pant i Niharendu Choudhury. "Solvation of fullerene in a course grained water: A molecular dynamics simulation study". W NANOFORUM 2014. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4917637.
Pełny tekst źródłaMialocq, J. C., T. Gustavsson, S. Pommeret, G. Baldacchino, P. Hébert i R. Naskrecki. "Ultrafast solvation dynamics of styrenic probes. Different behavior of polar and non-polar excited singlet states". W The 54th international meeting of physical chemistry: Fast elementary processes in chemical and biological systems. AIP, 1996. http://dx.doi.org/10.1063/1.50161.
Pełny tekst źródłaGauduel, Y., J. L. Martin, A. Migus, N. Yamada i A. Antonetti. "Femtosecond Study of Electron Localization and Solvation in Pure Water". W International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/up.1986.tha6.
Pełny tekst źródłaRaporty organizacyjne na temat "Solvation Dynamics - Biological Water"
Desiderati, Christopher. Carli Creek Regional Water Quality Project: Assessing Water Quality Improvement at an Urban Stormwater Constructed Wetland. Portland State University, 2022. http://dx.doi.org/10.15760/mem.78.
Pełny tekst źródłaAltman, Safra, R. Harris, S. McKay, Michael Kjelland i Todd Swannack. Oyster reef connectivity : ecological benefits and associated vulnerabilities. Engineer Research and Development Center (U.S.), sierpień 2022. http://dx.doi.org/10.21079/11681/45020.
Pełny tekst źródłaSpiegel, Yitzhak, Michael McClure, Itzhak Kahane i B. M. Zuckerman. Characterization of the Phytophagous Nematode Surface Coat to Provide New Strategies for Biocontrol. United States Department of Agriculture, listopad 1995. http://dx.doi.org/10.32747/1995.7613015.bard.
Pełny tekst źródłaBelkin, Shimshon, Sylvia Daunert i Mona Wells. Whole-Cell Biosensor Panel for Agricultural Endocrine Disruptors. United States Department of Agriculture, grudzień 2010. http://dx.doi.org/10.32747/2010.7696542.bard.
Pełny tekst źródłaOr, Dani, Shmulik Friedman i Jeanette Norton. Physical processes affecting microbial habitats and activity in unsaturated agricultural soils. United States Department of Agriculture, październik 2002. http://dx.doi.org/10.32747/2002.7587239.bard.
Pełny tekst źródłaNeedham, Glenn R., Uri Gerson, Gloria DeGrandi-Hoffman, D. Samatero, J. Yoder i William Bruce. Integrated Management of Tracheal Mite, Acarapis woodi, and of Varroa Mite, Varroa jacobsoni, Major Pests of Honey Bees. United States Department of Agriculture, marzec 2000. http://dx.doi.org/10.32747/2000.7573068.bard.
Pełny tekst źródła