Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Solvable groups.

Artykuły w czasopismach na temat „Solvable groups”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Solvable groups”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Albrecht, Ulrich. "The construction of $A$-solvable Abelian groups". Czechoslovak Mathematical Journal 44, nr 3 (1994): 413–30. http://dx.doi.org/10.21136/cmj.1994.128480.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Cherlin, Gregory L., i Ulrich Felgner. "Homogeneous Solvable Groups". Journal of the London Mathematical Society s2-44, nr 1 (sierpień 1991): 102–20. http://dx.doi.org/10.1112/jlms/s2-44.1.102.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Atanasov, Risto, i Tuval Foguel. "Solitary Solvable Groups". Communications in Algebra 40, nr 6 (czerwiec 2012): 2130–39. http://dx.doi.org/10.1080/00927872.2011.574241.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Sarma, B. K. "Solvable fuzzy groups". Fuzzy Sets and Systems 106, nr 3 (wrzesień 1999): 463–67. http://dx.doi.org/10.1016/s0165-0114(97)00264-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ray, Suryansu. "Solvable fuzzy groups". Information Sciences 75, nr 1-2 (grudzień 1993): 47–61. http://dx.doi.org/10.1016/0020-0255(93)90112-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Chen, P. B., i T. S. Wu. "On solvable groups". Mathematische Annalen 276, nr 1 (marzec 1986): 43–51. http://dx.doi.org/10.1007/bf01450922.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Abobala, Mohammad, i Mehmet Celik. "Under Solvable Groups as a Novel Generalization of Solvable Groups". Galoitica: Journal of Mathematical Structures and Applications 2, nr 1 (2022): 14–20. http://dx.doi.org/10.54216/gjmsa.020102.

Pełny tekst źródła
Streszczenie:
The objective of this paper is to define a new generalization of solvable groups by using the concept of power maps which generalize the classical concept of powers (exponents). Also, it presents many elementary properties of this new generalization in terms of theorems.
Style APA, Harvard, Vancouver, ISO itp.
8

GRUNEWALD, FRITZ, BORIS KUNYAVSKII i EUGENE PLOTKIN. "CHARACTERIZATION OF SOLVABLE GROUPS AND SOLVABLE RADICAL". International Journal of Algebra and Computation 23, nr 05 (sierpień 2013): 1011–62. http://dx.doi.org/10.1142/s0218196713300016.

Pełny tekst źródła
Streszczenie:
We give a survey of new characterizations of finite solvable groups and the solvable radical of an arbitrary finite group which were obtained over the past decade. We also discuss generalizations of these results to some classes of infinite groups and their analogues for Lie algebras. Some open problems are discussed as well.
Style APA, Harvard, Vancouver, ISO itp.
9

ZARRIN, MOHAMMAD. "GROUPS WITH FEW SOLVABLE SUBGROUPS". Journal of Algebra and Its Applications 12, nr 06 (9.05.2013): 1350011. http://dx.doi.org/10.1142/s0219498813500114.

Pełny tekst źródła
Streszczenie:
In this paper, we give some sufficient condition on the number of proper solvable subgroups of a group to be nilpotent or solvable. In fact, we show that every group with at most 5 (respectively, 58) proper solvable subgroups is nilpotent (respectively, solvable). Also these bounds cannot be improved.
Style APA, Harvard, Vancouver, ISO itp.
10

Khazal, R., i N. P. Mukherjee. "A note onp-solvable and solvable finite groups". International Journal of Mathematics and Mathematical Sciences 17, nr 4 (1994): 821–24. http://dx.doi.org/10.1155/s0161171294001158.

Pełny tekst źródła
Streszczenie:
The notion of normal index is utilized in proving necessary and sufficient conditions for a groupGto be respectively,p-solvable and solvable wherepis the largest prime divisor of|G|. These are used further in identifying the largest normalp-solvable and normal solvable subgroups, respectively, ofG.
Style APA, Harvard, Vancouver, ISO itp.
11

Kirtland, Joseph. "Finite solvable multiprimitive groups". Communications in Algebra 23, nr 1 (styczeń 1995): 335–56. http://dx.doi.org/10.1080/00927879508825224.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Abels, Herbert, i Roger Alperin. "Undistorted solvable linear groups". Transactions of the American Mathematical Society 363, nr 06 (1.06.2011): 3185. http://dx.doi.org/10.1090/s0002-9947-2011-05237-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Rhemtulla, Akbar, i Said Sidki. "Factorizable infinite solvable groups". Journal of Algebra 122, nr 2 (maj 1989): 397–409. http://dx.doi.org/10.1016/0021-8693(89)90225-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Vesanen, Ari. "Solvable Groups and Loops". Journal of Algebra 180, nr 3 (marzec 1996): 862–76. http://dx.doi.org/10.1006/jabr.1996.0098.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Budkin, A. I. "Dominions in Solvable Groups". Algebra and Logic 54, nr 5 (listopad 2015): 370–79. http://dx.doi.org/10.1007/s10469-015-9358-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Tent, Joan F. "Quadratic rational solvable groups". Journal of Algebra 363 (sierpień 2012): 73–82. http://dx.doi.org/10.1016/j.jalgebra.2012.04.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Timoshenko, E. I. "Universally equivalent solvable groups". Algebra and Logic 39, nr 2 (marzec 2000): 131–38. http://dx.doi.org/10.1007/bf02681667.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Liu, Yang, i Zi Qun Lu. "Solvable D 2-groups". Acta Mathematica Sinica, English Series 33, nr 1 (15.08.2016): 77–95. http://dx.doi.org/10.1007/s10114-016-5353-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Tyutyunov, V. N. "Characterization ofr-solvable groups". Siberian Mathematical Journal 41, nr 1 (styczeń 2000): 180–87. http://dx.doi.org/10.1007/bf02674008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

CHIODO, MAURICE. "FINITELY ANNIHILATED GROUPS". Bulletin of the Australian Mathematical Society 90, nr 3 (13.06.2014): 404–17. http://dx.doi.org/10.1017/s0004972714000355.

Pełny tekst źródła
Streszczenie:
AbstractIn 1976, Wiegold asked if every finitely generated perfect group has weight 1. We introduce a new property of groups, finitely annihilated, and show that this might be a possible approach to resolving Wiegold’s problem. For finitely generated groups, we show that in several classes (finite, solvable, free), being finitely annihilated is equivalent to having noncyclic abelianisation. However, we also construct an infinite family of (finitely presented) finitely annihilated groups with cyclic abelianisation. We apply our work to show that the weight of a nonperfect finite group, or a nonperfect finitely generated solvable group, is the same as the weight of its abelianisation. This recovers the known partial results on the Wiegold problem: a finite (or finitely generated solvable) perfect group has weight 1.
Style APA, Harvard, Vancouver, ISO itp.
21

Sardar, Pranab. "Packing subgroups in solvable groups". International Journal of Algebra and Computation 25, nr 05 (sierpień 2015): 917–26. http://dx.doi.org/10.1142/s0218196715500253.

Pełny tekst źródła
Streszczenie:
We show that any subgroup of a (virtually) nilpotent-by-polycyclic group satisfies the bounded packing property of Hruska–Wise [Packing subgroups in relatively hyperbolic groups, Geom. Topol. 13 (2009) 1945–1988]. In particular, the same is true for all finitely generated subgroups of metabelian groups and linear solvable groups. However, we find an example of a finitely generated solvable group of derived length 3 which admits a finitely generated metabelian subgroup without the bounded packing property. In this example the subgroup is a retract also. Thus we obtain a negative answer to Problem 2.27 of the above paper. On the other hand, we show that polycyclic subgroups of solvable groups satisfy the bounded packing property.
Style APA, Harvard, Vancouver, ISO itp.
22

Jafarpour, M., H. Aghabozorgi i B. Davvaz. "Solvable groups derived from hypergroups". Journal of Algebra and Its Applications 15, nr 04 (19.02.2016): 1650067. http://dx.doi.org/10.1142/s0219498816500675.

Pełny tekst źródła
Streszczenie:
In this paper, we introduce the smallest equivalence relation [Formula: see text] on a hypergroup [Formula: see text] such that the quotient [Formula: see text], the set of all equivalence classes, is a solvable group. The characterization of solvable groups via strongly regular relations is investigated and several results on the topic are presented.
Style APA, Harvard, Vancouver, ISO itp.
23

Albrecht, Ulrich F. "Extension functors on the category of $A$-solvable abelian groups". Czechoslovak Mathematical Journal 41, nr 4 (1991): 685–94. http://dx.doi.org/10.21136/cmj.1991.102499.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Roman’kov, Vitaly. "Embedding theorems for solvable groups". Proceedings of the American Mathematical Society 149, nr 10 (28.07.2021): 4133–43. http://dx.doi.org/10.1090/proc/15562.

Pełny tekst źródła
Streszczenie:
In this paper, we prove a series of results on group embeddings in groups with a small number of generators. We show that each finitely generated group G G lying in a variety M {\mathcal M} can be embedded in a 4 4 -generated group H ∈ M A H \in {\mathcal M}{\mathcal A} ( A {\mathcal A} means the variety of abelian groups). If G G is a finite group, then H H can also be found as a finite group. It follows, that any finitely generated (finite) solvable group G G of the derived length l l can be embedded in a 4 4 -generated (finite) solvable group H H of length l + 1 l+1 . Thus, we answer the question of V. H. Mikaelian and A. Yu. Olshanskii. It is also shown that any countable group G ∈ M G\in {\mathcal M} , such that the abelianization G a b G_{ab} is a free abelian group, is embeddable in a 2 2 -generated group H ∈ M A H\in {\mathcal M}{\mathcal A} .
Style APA, Harvard, Vancouver, ISO itp.
25

Dymarz, Tullia. "Envelopes of certain solvable groups". Commentarii Mathematici Helvetici 90, nr 1 (2015): 195–224. http://dx.doi.org/10.4171/cmh/351.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Rogers, Pat, Howard Smith i Donald Solitar. "Tarski's Problem for Solvable Groups". Proceedings of the American Mathematical Society 96, nr 4 (kwiecień 1986): 668. http://dx.doi.org/10.2307/2046323.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Roman’kov, V. A. "Algorithmic theory of solvable groups". Prikladnaya Diskretnaya Matematika, nr 52 (2021): 16–64. http://dx.doi.org/10.17223/20710410/52/2.

Pełny tekst źródła
Streszczenie:
The purpose of this survey is to give some picture of what is known about algorithmic and decision problems in the theory of solvable groups. We will provide a number of references to various results, which are presented without proof. Naturally, the choice of the material reported on reflects the author’s interests and many worthy contributions to the field will unfortunately go without mentioning. In addition to achievements in solving classical algorithmic problems, the survey presents results on other issues. Attention is paid to various aspects of modern theory related to the complexity of algorithms, their practical implementation, random choice, asymptotic properties. Results are given on various issues related to mathematical logic and model theory. In particular, a special section of the survey is devoted to elementary and universal theories of solvable groups. Special attention is paid to algorithmic questions regarding rational subsets of groups. Results on algorithmic problems related to homomorphisms, automorphisms, and endomorphisms of groups are presented in sufficient detail.
Style APA, Harvard, Vancouver, ISO itp.
28

Mohammadzadeh, F., i Elahe Mohammadzadeh. "On $\alpha$-solvable fundamental groups". Journal of Algebraic Hyperstructures and Logical Algebras 2, nr 2 (1.05.2021): 35–46. http://dx.doi.org/10.52547/hatef.jahla.2.2.35.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

SUZUKI, Michio. "Solvable Generation of Finite Groups". Hokkaido Mathematical Journal 16, nr 1 (luty 1987): 109–13. http://dx.doi.org/10.14492/hokmj/1381517825.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Meierfrankenfeld, Ulrich, Richard E. Phillips i Orazio Puglisi. "Locally Solvable Finitary Linear Groups". Journal of the London Mathematical Society s2-47, nr 1 (luty 1993): 31–40. http://dx.doi.org/10.1112/jlms/s2-47.1.31.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Farrell, F. Thomas, i Peter A. Linnell. "K-Theory of Solvable Groups". Proceedings of the London Mathematical Society 87, nr 02 (wrzesień 2003): 309–36. http://dx.doi.org/10.1112/s0024611503014072.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Pál, Hegedus. "Structure of solvable rational groups". Proceedings of the London Mathematical Society 90, nr 02 (25.02.2005): 439–71. http://dx.doi.org/10.1112/s0024611504015035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Snow, Dennis M. "Complex orbits of solvable groups". Proceedings of the American Mathematical Society 110, nr 3 (1.03.1990): 689. http://dx.doi.org/10.1090/s0002-9939-1990-1028050-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Edidin, Dan, i William Graham. "Good representations and solvable groups." Michigan Mathematical Journal 48, nr 1 (2000): 203–13. http://dx.doi.org/10.1307/mmj/1030132715.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Emmanouil, Ioannis. "Solvable groups and Bass' conjecture". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 326, nr 3 (luty 1998): 283–87. http://dx.doi.org/10.1016/s0764-4442(97)82981-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

OSIN, D. V. "The entropy of solvable groups". Ergodic Theory and Dynamical Systems 23, nr 3 (czerwiec 2003): 907–18. http://dx.doi.org/10.1017/s0143385702000937.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Li, Cai Heng, i Lei Wang. "Finite REA-groups are solvable". Journal of Algebra 522 (marzec 2019): 195–217. http://dx.doi.org/10.1016/j.jalgebra.2018.11.033.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Deshpande, Tanmay. "Minimal idempotents on solvable groups". Selecta Mathematica 22, nr 3 (19.03.2016): 1613–61. http://dx.doi.org/10.1007/s00029-016-0229-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Wolter, T. H. "Einstein Metrics on solvable groups". Mathematische Zeitschrift 206, nr 1 (styczeń 1991): 457–71. http://dx.doi.org/10.1007/bf02571355.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

TANAKA, Yasuhiko. "Amalgams of quasithin solvable groups". Japanese journal of mathematics. New series 17, nr 2 (1991): 203–66. http://dx.doi.org/10.4099/math1924.17.203.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Arazy, Jonathan, i Harald Upmeier. "Berezin Transform for Solvable Groups". Acta Applicandae Mathematicae 81, nr 1 (marzec 2004): 5–28. http://dx.doi.org/10.1023/b:acap.0000024192.68563.8d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

HILLMAN, JONATHAN A. "2-KNOTS WITH SOLVABLE GROUPS". Journal of Knot Theory and Its Ramifications 20, nr 07 (lipiec 2011): 977–94. http://dx.doi.org/10.1142/s021821651100898x.

Pełny tekst źródła
Streszczenie:
We show that fibered 2-knots with closed fiber the Hantzsche–Wendt flat 3-manifold are not reflexive, while every fibered 2-knot with closed fiber a Nil-manifold with base orbifold S(3, 3, 3) is reflexive. We also determine when the knots are amphicheiral or invertible, and give explicit representatives for the possible meridians (up to automorphisms of the knot group which induce the identity on abelianization) for the groups of all knots in either class. This completes the TOP classification of 2-knots with torsion-free, elementary amenable knot group. In the final section, we show that the only non-trivial doubly null-concordant knots with such groups are those with the group of the 2-twist spin of the knot 946.
Style APA, Harvard, Vancouver, ISO itp.
43

Isaacs, I. M., i Geoffrey R. Robinson. "Isomorphic subgroups of solvable groups". Proceedings of the American Mathematical Society 143, nr 8 (23.04.2015): 3371–76. http://dx.doi.org/10.1090/proc/12534.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Rogers, Pat, Howard Smith i Donald Solitar. "Tarski’s problem for solvable groups". Proceedings of the American Mathematical Society 96, nr 4 (1.04.1986): 668. http://dx.doi.org/10.1090/s0002-9939-1986-0826500-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Garreta, Albert, Alexei Miasnikov i Denis Ovchinnikov. "Diophantine problems in solvable groups". Bulletin of Mathematical Sciences 10, nr 01 (21.02.2020): 2050005. http://dx.doi.org/10.1142/s1664360720500058.

Pełny tekst źródła
Streszczenie:
We study the Diophantine problem (decidability of finite systems of equations) in different classes of finitely generated solvable groups (nilpotent, polycyclic, metabelian, free solvable, etc.), which satisfy some natural “non-commutativity” conditions. For each group [Formula: see text] in one of these classes, we prove that there exists a ring of algebraic integers [Formula: see text] that is interpretable in [Formula: see text] by finite systems of equations ([Formula: see text]-interpretable), and hence that the Diophantine problem in [Formula: see text] is polynomial time reducible to the Diophantine problem in [Formula: see text]. One of the major open conjectures in number theory states that the Diophantine problem in any such [Formula: see text] is undecidable. If true this would imply that the Diophantine problem in any such [Formula: see text] is also undecidable. Furthermore, we show that for many particular groups [Formula: see text] as above, the ring [Formula: see text] is isomorphic to the ring of integers [Formula: see text], so the Diophantine problem in [Formula: see text] is, indeed, undecidable. This holds, in particular, for free nilpotent or free solvable non-abelian groups, as well as for non-abelian generalized Heisenberg groups and uni-triangular groups [Formula: see text]. Then, we apply these results to non-solvable groups that contain non-virtually abelian maximal finitely generated nilpotent subgroups. For instance, we show that the Diophantine problem is undecidable in the groups [Formula: see text].
Style APA, Harvard, Vancouver, ISO itp.
46

Turull, Alexandre. "Character correspondences in solvable groups". Journal of Algebra 295, nr 1 (styczeń 2006): 157–78. http://dx.doi.org/10.1016/j.jalgebra.2005.01.028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Myasnikov, A., i N. Romanovskiy. "Krull dimension of solvable groups". Journal of Algebra 324, nr 10 (listopad 2010): 2814–31. http://dx.doi.org/10.1016/j.jalgebra.2010.07.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Isaacs, I. M. "Solvable groups contain large centralizers". Israel Journal of Mathematics 55, nr 1 (luty 1986): 58–64. http://dx.doi.org/10.1007/bf02772695.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Navarro, Gabriel, Alexandre Turull i Thomas R. Wolf. "Block separation in solvable groups". Archiv der Mathematik 85, nr 4 (październik 2005): 293–96. http://dx.doi.org/10.1007/s00013-005-1407-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Crestani, Eleonora, i Andrea Lucchini. "Normal coverings of solvable groups". Archiv der Mathematik 98, nr 1 (29.11.2011): 13–18. http://dx.doi.org/10.1007/s00013-011-0341-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii