Artykuły w czasopismach na temat „Soluble lead redox flow battery”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Soluble lead redox flow battery”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Shittu, Emmanuel, Rathod Suman, Musuwathi Krishnamoorthy Ravikumar, Ashok Kumar Shukla, Guangling Zhao, Satish Patil i Jenny Baker. "Life cycle assessment of soluble lead redox flow battery". Journal of Cleaner Production 337 (luty 2022): 130503. http://dx.doi.org/10.1016/j.jclepro.2022.130503.
Pełny tekst źródłaAn, Sang-Yong, i Eung-Jin Kim. "Characteristics of Redox Flow Battery Using the Soluble Lead Electrolyte". Journal of the Korean Electrochemical Society 14, nr 4 (30.11.2011): 214–18. http://dx.doi.org/10.5229/jkes.2011.14.4.214.
Pełny tekst źródłaNandanwar, Mahendra, i Sanjeev Kumar. "Charge coup de fouet phenomenon in soluble lead redox flow battery". Chemical Engineering Science 154 (listopad 2016): 61–71. http://dx.doi.org/10.1016/j.ces.2016.07.001.
Pełny tekst źródłaJaiswal, Nandini, Harun Khan i R. Kothandaraman. "Review—Recent Developments and Challenges in Membrane-Less Soluble Lead Redox Flow Batteries". Journal of The Electrochemical Society 169, nr 4 (1.04.2022): 040543. http://dx.doi.org/10.1149/1945-7111/ac662a.
Pełny tekst źródłaRathod, Suman, Nandini Jaiswal, M. K. Ravikumar, Satish Patil i Ashok Shukla. "Effect of binary additives on performance of the undivided soluble-lead-redox-flow battery". Electrochimica Acta 365 (styczeń 2021): 137361. http://dx.doi.org/10.1016/j.electacta.2020.137361.
Pełny tekst źródłaNandanwar, Mahendra N., Kottu Santosh Kumar, S. S. Srinivas i D. M. Dinesh. "Pump-less, free-convection-driven redox flow batteries: Modelling, simulation, and experimental demonstration for the soluble lead redox flow battery". Journal of Power Sources 454 (kwiecień 2020): 227918. http://dx.doi.org/10.1016/j.jpowsour.2020.227918.
Pełny tekst źródłaNandanwar, Mahendra, i Sanjeev Kumar. "A modelling and simulation study of soluble lead redox flow battery: Effect of presence of free convection on the battery characteristics". Journal of Power Sources 412 (luty 2019): 536–44. http://dx.doi.org/10.1016/j.jpowsour.2018.11.070.
Pełny tekst źródłaSarigamala, Karthik Kiran, Yu-Hsiu Lin, Kai Rui Pan i Hsun-Yi Chen. "Life span enhancement of low cost soluble-lead-redox-flow battery using high performance meso-graphite spherules/AC anode". Journal of Energy Storage 70 (październik 2023): 107957. http://dx.doi.org/10.1016/j.est.2023.107957.
Pełny tekst źródłaBANERJEE, A., D. SAHA, T. N. GURU Row i A. K. SHUKLA. "A soluble-lead redox flow battery with corrugated graphite sheet and reticulated vitreous carbon as positive and negative current collectors". Bulletin of Materials Science 36, nr 1 (luty 2013): 163–70. http://dx.doi.org/10.1007/s12034-013-0426-7.
Pełny tekst źródłaNandanwar, Mahendra N. "Effect of porous nature of anode on the performance of the soluble lead redox flow battery: A modeling and simulation study". Journal of Power Sources 571 (lipiec 2023): 233029. http://dx.doi.org/10.1016/j.jpowsour.2023.233029.
Pełny tekst źródłaRomadina, Elena, i Keith J. Stevenson. "(Digital Presentation) Novel Organic Materials for Non-Aqueous Redox Flow Batteries: Implementation of Triarylamine and Phenazine Core Structures". ECS Meeting Abstracts MA2022-01, nr 48 (7.07.2022): 2039. http://dx.doi.org/10.1149/ma2022-01482039mtgabs.
Pełny tekst źródłaClaus, Ana, Alexandra Berkova, Osama Awadallah i Bilal El-Zahab. "Seawater Battery: Strategies to Enable High Performance". ECS Meeting Abstracts MA2022-02, nr 64 (9.10.2022): 2330. http://dx.doi.org/10.1149/ma2022-02642330mtgabs.
Pełny tekst źródłaGong, Ke, Fei Xu, Jonathan B. Grunewald, Xiaoya Ma, Yun Zhao, Shuang Gu i Yushan Yan. "All-Soluble All-Iron Aqueous Redox-Flow Battery". ACS Energy Letters 1, nr 1 (9.05.2016): 89–93. http://dx.doi.org/10.1021/acsenergylett.6b00049.
Pełny tekst źródłaKrishna, M., R. G. A. Wills, A. A. Shah, D. Hall i J. Collins. "The separator-divided soluble lead flow battery". Journal of Applied Electrochemistry 48, nr 9 (7.07.2018): 1031–41. http://dx.doi.org/10.1007/s10800-018-1230-2.
Pełny tekst źródłaKoenig, Gary, Devanshi Gupta, Jing Wang i Yuxuan Zhang. "Assessing Mediated Redox Flow Battery Reaction Progression". ECS Meeting Abstracts MA2022-02, nr 4 (9.10.2022): 549. http://dx.doi.org/10.1149/ma2022-024549mtgabs.
Pełny tekst źródłaWills, R. G. A., J. Collins, D. Stratton-Campbell, C. T. J. Low, D. Pletcher i Frank C. Walsh. "Developments in the soluble lead-acid flow battery". Journal of Applied Electrochemistry 40, nr 5 (1.03.2009): 955–65. http://dx.doi.org/10.1007/s10800-009-9815-4.
Pełny tekst źródłaWang, Hao, Sayed Youssef Sayed, Yuqiao Zhou, Brian C. Olsen, Erik J. Luber i Jillian M. Buriak. "Water-soluble pH-switchable cobalt complexes for aqueous symmetric redox flow batteries". Chemical Communications 56, nr 25 (2020): 3605–8. http://dx.doi.org/10.1039/d0cc00383b.
Pełny tekst źródłaZiegler, Christopher J. "(Keynote) Zwitterionic Ferrocenes As Redox Flow Battery Components". ECS Meeting Abstracts MA2022-01, nr 48 (7.07.2022): 2021. http://dx.doi.org/10.1149/ma2022-01482021mtgabs.
Pełny tekst źródłaSuman, Rathod, Satya Prakash Yadav, M. K. Ravikumar, Satish Patil i A. K. Shukla. "Developing Shunt-Current Minimized Soluble-Lead-Redox-Flow-Batteries". Journal of The Electrochemical Society 168, nr 12 (1.12.2021): 120552. http://dx.doi.org/10.1149/1945-7111/ac436c.
Pełny tekst źródłaWang, Wei. "(Invited) Accelerating Material Design for Aqueous Organic Redox Flow Batteries". ECS Meeting Abstracts MA2022-02, nr 46 (9.10.2022): 1701. http://dx.doi.org/10.1149/ma2022-02461701mtgabs.
Pełny tekst źródłaWang, Wei. "(Invited) Accelerating Material Design for Aqueous Organic Redox Flow Batteries". ECS Meeting Abstracts MA2022-01, nr 3 (7.07.2022): 487. http://dx.doi.org/10.1149/ma2022-013487mtgabs.
Pełny tekst źródłaStracensky, Thomas, Sandip Maurya, Rangachary Mukundan i Sanjeev Mukerjee. "Novel Anolyte Redox Active Organic Molecules for Redox Flow Battery Applications". ECS Meeting Abstracts MA2022-02, nr 1 (9.10.2022): 47. http://dx.doi.org/10.1149/ma2022-02147mtgabs.
Pełny tekst źródłaFreeman, Matthew B., Le Wang, Daniel S. Jones i Christopher M. Bejger. "A cobalt sulfide cluster-based catholyte for aqueous flow battery applications". Journal of Materials Chemistry A 6, nr 44 (2018): 21927–32. http://dx.doi.org/10.1039/c8ta05788e.
Pełny tekst źródłaDong-Yang, LIU, CHENG Jie, PAN Jun-Qing, WEN Yue-Hua, CAO Gao-Ping i YANG Yu-Sheng. "All-Lead Redox Flow Battery in a Fluoroboric Acid Electrolyte". Acta Physico-Chimica Sinica 27, nr 11 (2011): 2571–76. http://dx.doi.org/10.3866/pku.whxb20111105.
Pełny tekst źródłaHazza, Ahmed, Derek Pletcher i Richard Wills. "A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(ii)". Physical Chemistry Chemical Physics 6, nr 8 (2004): 1773. http://dx.doi.org/10.1039/b401115e.
Pełny tekst źródłaPletcher, Derek, i Richard Wills. "A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(ii)". Physical Chemistry Chemical Physics 6, nr 8 (2004): 1779. http://dx.doi.org/10.1039/b401116c.
Pełny tekst źródłaPletcher, Derek, Hantao Zhou, Gareth Kear, C. T. John Low, Frank C. Walsh i Richard G. A. Wills. "A novel flow battery—A lead-acid battery based on an electrolyte with soluble lead(II)". Journal of Power Sources 180, nr 1 (maj 2008): 621–29. http://dx.doi.org/10.1016/j.jpowsour.2008.02.024.
Pełny tekst źródłaPletcher, Derek, Hantao Zhou, Gareth Kear, C. T. John Low, Frank C. Walsh i Richard G. A. Wills. "A novel flow battery—A lead-acid battery based on an electrolyte with soluble lead(II)". Journal of Power Sources 180, nr 1 (maj 2008): 630–34. http://dx.doi.org/10.1016/j.jpowsour.2008.02.025.
Pełny tekst źródłaPletcher, Derek, i Richard Wills. "A novel flow battery—A lead acid battery based on an electrolyte with soluble lead(II)". Journal of Power Sources 149 (wrzesień 2005): 96–102. http://dx.doi.org/10.1016/j.jpowsour.2005.01.048.
Pełny tekst źródłaHazza, Ahmed, Derek Pletcher i Richard Wills. "A novel flow battery—A lead acid battery based on an electrolyte with soluble lead(II)". Journal of Power Sources 149 (wrzesień 2005): 103–11. http://dx.doi.org/10.1016/j.jpowsour.2005.01.049.
Pełny tekst źródłaLi, Xiaohong, Derek Pletcher i Frank C. Walsh. "A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II)". Electrochimica Acta 54, nr 20 (sierpień 2009): 4688–95. http://dx.doi.org/10.1016/j.electacta.2009.03.075.
Pełny tekst źródłaShah, A. A., X. Li, R. G. A. Wills i F. C. Walsh. "A Mathematical Model for the Soluble Lead-Acid Flow Battery". Journal of The Electrochemical Society 157, nr 5 (2010): A589. http://dx.doi.org/10.1149/1.3328520.
Pełny tekst źródłaSchrage, Briana R., Baosen Zhang, Stephen C. Petrochko, Zhiling Zhao, Ariana Frkonja-Kuczin, Aliaksei Boika i Christopher J. Ziegler. "Highly Soluble Imidazolium Ferrocene Bis(sulfonate) Salts for Redox Flow Battery Applications". Inorganic Chemistry 60, nr 14 (2.07.2021): 10764–71. http://dx.doi.org/10.1021/acs.inorgchem.1c01473.
Pełny tekst źródłaLi, Yun, Jeroen Sniekers, João Malaquias, Xianfeng Li, Stijn Schaltin, Linda Stappers, Koen Binnemans, Jan Fransaer i Ivo F. J. Vankelecom. "A non-aqueous all-copper redox flow battery with highly soluble active species". Electrochimica Acta 236 (maj 2017): 116–21. http://dx.doi.org/10.1016/j.electacta.2017.03.039.
Pełny tekst źródłaLiu, Ping, Yu-liang Cao, Guo-Ran Li, Xue-Ping Gao, Xin-Ping Ai i Han-Xi Yang. "A Solar Rechargeable Flow Battery Based on Photoregeneration of Two Soluble Redox Couples". ChemSusChem 6, nr 5 (4.04.2013): 802–6. http://dx.doi.org/10.1002/cssc.201200962.
Pełny tekst źródłaHengesbach, Charley, Jessica Scott, Sharmila Samaroo, Chase Bruggeman, David Hickey i Thomas F. Guarr. "Nonaqueous Redox Flow Batteries Incorporating Novel Pyridinium Anolytes". ECS Meeting Abstracts MA2022-01, nr 3 (7.07.2022): 480. http://dx.doi.org/10.1149/ma2022-013480mtgabs.
Pełny tekst źródłaZhang, C. P., S. M. Sharkh, X. Li, F. C. Walsh, C. N. Zhang i J. C. Jiang. "The performance of a soluble lead-acid flow battery and its comparison to a static lead-acid battery". Energy Conversion and Management 52, nr 12 (listopad 2011): 3391–98. http://dx.doi.org/10.1016/j.enconman.2011.07.006.
Pełny tekst źródłaZeng, Y. K., T. S. Zhao, X. L. Zhou, L. Wei i Y. X. Ren. "A novel iron-lead redox flow battery for large-scale energy storage". Journal of Power Sources 346 (kwiecień 2017): 97–102. http://dx.doi.org/10.1016/j.jpowsour.2017.02.018.
Pełny tekst źródłaFischer, Peter, Petr Mazúr i Joanna Krakowiak. "Family Tree for Aqueous Organic Redox Couples for Redox Flow Battery Electrolytes: A Conceptual Review". Molecules 27, nr 2 (16.01.2022): 560. http://dx.doi.org/10.3390/molecules27020560.
Pełny tekst źródłaFraser, E. J., J. P. Le Houx, L. F. Arenas, K. K. J. Ranga Dinesh i R. G. A. Wills. "The soluble lead flow battery: Image-based modelling of porous carbon electrodes". Journal of Energy Storage 52 (sierpień 2022): 104791. http://dx.doi.org/10.1016/j.est.2022.104791.
Pełny tekst źródłaWang, Caixing, Zhen Yang, Bo Yu, Huaizhu Wang, Kaiqiang Zhang, Guigen Li, Zuoxiu Tie i Zhong Jin. "Alkaline soluble 1,3,5,7-tetrahydroxyanthraquinone with high reversibility as anolyte for aqueous redox flow battery". Journal of Power Sources 524 (marzec 2022): 231001. http://dx.doi.org/10.1016/j.jpowsour.2022.231001.
Pełny tekst źródłaSun, Hong, Feiyang Hu, Zirui Jiang, Zhiwen Cui, Mahalingam Ravivarma, Hao Fan, Jiangxuan Song i Duanyang Kong. "Advancements of non-viologen-based anolytes for pH-neutral aqueous organic redox flow batteries". Chemical Synthesis 3, nr 4 (2023): 33. http://dx.doi.org/10.20517/cs.2023.07.
Pełny tekst źródłaLi, Bin, i Jun Liu. "Progress and directions in low-cost redox-flow batteries for large-scale energy storage". National Science Review 4, nr 1 (1.01.2017): 91–105. http://dx.doi.org/10.1093/nsr/nww098.
Pełny tekst źródłaGhufron, Muhammad, Pranata Budi Kurriawan, Istiroyah Istiroyah i Perwita Anik Cholisina. "ANALISIS EFISIENSI ENERGI FLOW BATERAI LEAD ACID KEADAAN STATIS DAN DINAMIS". ROTOR 10, nr 2 (1.11.2017): 42. http://dx.doi.org/10.19184/rotor.v10i2.5912.
Pełny tekst źródłaNa, Zhaolin, Shengnan Xu, Dongming Yin i Limin Wang. "A cerium–lead redox flow battery system employing supporting electrolyte of methanesulfonic acid". Journal of Power Sources 295 (listopad 2015): 28–32. http://dx.doi.org/10.1016/j.jpowsour.2015.06.115.
Pełny tekst źródłaStonawski, Julian, Simon Thiele i Jochen Alfred Kerres. "Novel Anion-Exchange Blend Membranes Comprised of a Commercially Available & Water-Soluble Ionomer for All-Vanadium Redox Flow Batteries". ECS Meeting Abstracts MA2022-01, nr 35 (7.07.2022): 1408. http://dx.doi.org/10.1149/ma2022-01351408mtgabs.
Pełny tekst źródłaNguyen, Trung Van, i Yuanchao Li. "New Developments in the High-Energy-Density Solid-Liquid Storage Technology for Redox Flow Batteries". ECS Meeting Abstracts MA2022-02, nr 1 (9.10.2022): 43. http://dx.doi.org/10.1149/ma2022-02143mtgabs.
Pełny tekst źródłaFraser, E. J., K. K. J. Ranga Dinesh i R. G. A. Wills. "A two dimensional numerical model of the membrane-divided soluble lead flow battery". Energy Reports 7 (maj 2021): 49–55. http://dx.doi.org/10.1016/j.egyr.2021.02.056.
Pełny tekst źródłaLI, Liyu, i Qingtao Luo. "Near Neutral Aqueous Fe-Cr Complex Flow Battery". ECS Meeting Abstracts MA2022-01, nr 3 (7.07.2022): 476. http://dx.doi.org/10.1149/ma2022-013476mtgabs.
Pełny tekst źródłaHendriana, Dena, Mochamad Hamdan Aziz, Yohanes Acep Nanang Kardana, Muhamad Lutfi Rachmat, Gembong Baskoro i Henry Nasution. "Self-Discharging and Corrosion Problems in Vanadium Redox Flow Battery". Reaktor 22, nr 3 (24.01.2023): 77–85. http://dx.doi.org/10.14710/reaktor.22.3.77-85.
Pełny tekst źródła