Gotowa bibliografia na temat „Solubility of Liquids”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Solubility of Liquids”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Solubility of Liquids"
Zafarani-Moattar, Mohammad Taghi, Hemayat Shekaari i Elnaz Mazaher Haji Agha. "Measurement and Modeling of Solubility of Galactose in Aqueous Ionic Liquids, 1-Butyl-3-Methyl Imidazolium Bromide, 1-Hexyl-3-Methyl Imidazolium Bromide and 1-Butyl-3-Methylimidazolium Chloride at T = (298.15 And 308.15) K". Pharmaceutical Sciences 25, nr 4 (20.12.2019): 319–30. http://dx.doi.org/10.15171/ps.2019.32.
Pełny tekst źródłaBiń, Andrzej K. "Ozone Solubility in Liquids". Ozone: Science & Engineering 28, nr 2 (maj 2006): 67–75. http://dx.doi.org/10.1080/01919510600558635.
Pełny tekst źródłaMonder, Hila, Leo Bielenki, Hanna Dodiuk, Anna Dotan i Samuel Kenig. "Poly (Dimethylsiloxane) Coating for Repellency of Polar and Non-Polar Liquids". Polymers 12, nr 10 (21.10.2020): 2423. http://dx.doi.org/10.3390/polym12102423.
Pełny tekst źródłaMatuszek, Karolina, Ewa Pankalla, Aleksander Grymel, Piotr Latos i Anna Chrobok. "Studies on the Solubility of Terephthalic Acid in Ionic Liquids". Molecules 25, nr 1 (24.12.2019): 80. http://dx.doi.org/10.3390/molecules25010080.
Pełny tekst źródłaWu, Tian, Qing Huang, Wei Li, Gongxuan Chen, Xiaoling Ma i Guoping Zeng. "Electroreduction of Copper Dichloride Powder to Copper Nanoparticles in an Ionic Liquid". Journal of Nanomaterials 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/751424.
Pełny tekst źródłaBuchowski, H., i A. Khiat. "Solubility of solids in liquids: one-parameter solubility equation". Fluid Phase Equilibria 25, nr 3 (styczeń 1986): 273–78. http://dx.doi.org/10.1016/0378-3812(86)80003-6.
Pełny tekst źródłaLei, Zhigang, Chengna Dai i Biaohua Chen. "Gas Solubility in Ionic Liquids". Chemical Reviews 114, nr 2 (6.11.2013): 1289–326. http://dx.doi.org/10.1021/cr300497a.
Pełny tekst źródłaTurner, J. C. R. "Solubility of Gases in Liquids". Chemical Engineering Science 46, nr 9 (1991): 2385. http://dx.doi.org/10.1016/0009-2509(91)85142-k.
Pełny tekst źródłaManic, Marina S., i Vesna Najdanovic-Visak. "Solubility of Mixtures Containing Soybean Oil, Ionic Liquid and Methanol". Open Chemical Engineering Journal 10, nr 1 (8.04.2016): 41–49. http://dx.doi.org/10.2174/1874123101610010041.
Pełny tekst źródłaGamsjäger, Heinz, John W. Lorimer, Mark Salomon, David G. Shaw i Reginald P. T. Tomkins. "The IUPAC-NIST Solubility Data Series: A guide to preparation and use of compilations and evaluations (IUPAC Technical Report)". Pure and Applied Chemistry 82, nr 5 (22.03.2010): 1137–59. http://dx.doi.org/10.1351/pac-rep-09-10-33.
Pełny tekst źródłaRozprawy doktorskie na temat "Solubility of Liquids"
Campanell, Frank Christopher. "The Modeling of Solubility". Wright State University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=wright1169068854.
Pełny tekst źródłaAsatani, Haruki. "Solubility of gases in liquids". Thesis, University of Ottawa (Canada), 1986. http://hdl.handle.net/10393/4643.
Pełny tekst źródłaBernardo, Carlos Gabriel Pires Morgado. "Solubility of organic liquids in polystyrene matrices". Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419261.
Pełny tekst źródłaWu, M. F. "The solubility of solutes in cryogenic liquids". Thesis, University of Southampton, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373935.
Pełny tekst źródłaOchsner, Allison Becker. "Solubility prediction in nonideal liquid mixtures /". The Ohio State University, 1985. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487260859494571.
Pełny tekst źródłaSantos, Ana Rute Duarte dos. "Study on solubility of pharmaceutical compounds in ionic liquids". Master's thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/9660.
Pełny tekst źródłaThe sufficient solubility of N-acetyl-L-cysteine (NAC), coumarin (COU) and 4-hydroxycoumarin (4HC) in alternative solvents obtained in this work can open new perspectives in pharmaceutical processing. Solid–liquid equilibrium (SLE) measurements have been made using a dynamic (synthetic) method. The melting point and the enthalpy of fusion of the pharmaceutical compounds were acquired using differential scanning calorimetry (DSC). The solubility of N-acetyl-L-cysteine and 4-hydroxycoumarin in trifluoromethanesulfonate ionic liquids was found to be significantly higher than in the studied bis(trifluoromethylsulfonyl)imide ionic liquids, and when compared, coumarin have the opposite behaviour. The best solvent amongst studied for this antioxidant (NAC) and anticoagulants (COU and 4HC) was discovered. The solid–liquid phase equilibrium were described using six different correlation equations which revealed relatively good description with the acceptable standard deviation temperature range. Moreover, the solubility data was used to calculate the 1-octanol/water partition coefficients and experimental partition coefficients (logP) was found to be negative in N-acetyl-L-cysteine and positive in the case of coumarin, at five temperatures with N-acetyl-L-cysteine being more hydrophilic and coumarin more hydrophobic; These results are also proof of the possibility of using these compounds as pharmaceutical products.
Batista, Marta Luísa Salsas. "Development of a solubility parameters scale for ionic liquids". Master's thesis, Universidade de Aveiro, 2010. http://hdl.handle.net/10773/3140.
Pełny tekst źródłaOs biocombustíveis, como bioetanol e butanol, têm se tornado numa área de grande relevância e objecto de investigação, dadas as suas propriedades que possibilitam a substituição dos combustíveis fósseis mais comuns. No entanto, a sua produção tem um problema associado que é a formação de azeotropos sempre que o álcool se encontra na presença de água. Este problema é usualmente ultrapassado pela utilização de Distilação Extractiva, onde os Líquidos Iónicos (ILs) são usados como agentes de separação, com o intuito de quebrarem o azeotropo. Na última década, os líquidos iónicos, dadas as suas propriedades únicas, têm sido alvo de muita investigação. Entre as mais diversas características, a possibilidade de refinar as suas propriedades para uma tarefa específica, permitiu identificar a necessidade de estudar e perceber qual a relação estrutura-propriedade dos líquidos iónicos, o que levou ao recurso de modelos predictivos. Neste trabalho, o parâmetro de solubilidade de Hildebrand baseado na Teoria das Soluções Regulares, foi utilizado para estimar o parâmetro de solubilidade usando dados experimentais disponíveis para coeficientes de actividade a diluição infinita e também para viscosidade, com o objectivo de obter de uma escala de parâmetros de solubilidade para líquidos iónicos. Dos resultados obtidos, para os coeficientes de actividade a diluição infinita, foi possível observar que os líquidos iónicos possuem um carácter anfifílico (efeito camaleónico), e utilizando a viscosidade na estimação dos parâmetros de solubilidade verificou-se que, no entanto, os líquidos iónicos comportam-se predominantemente como moléculas polares. Neste trabalho, também foram medidas solubilidades para o líquido iónico hexafluorofosfato de 1-butil-3-metil-imidazólio em misturas de água e 1- propanol e ainda 1-propanol e tolueno. Este procedimento permitiu a confirmação do comportamento (efeito camaleónico) descrito anteriormente pela utilização de coeficientes de actividade a diluição infinita. Na estimação dos parâmetros de solubilidade, algumas não conformidades foram observadas. A sua causa poderá estar no facto de que o parâmetro de solubilidade de Hildebrand não detalha a polaridade da molecula ou interacções específicas que, os líquidos iónicos sendo moléculas complexas, poderá ser insuficiente para descrever o seu comportamento. Desta forma, extensões ao parâmetro de solubilidade de Hildebrand são sugeridas neste trabalho. ABSTRACT: Bioethanol and biobutanol are biofuels that nowadays are gaining significance due to their physical and chemical properties that enables the replacement of fossil fuels. Nevertheless, their production brings an inherent problem which is the formation of an azeotrope when the alcohol is in the presence of water. Extractive distillation is the process most widely used, where Ionic liquids may act as separation agent, in order to break or shift the azeotrope. For the past decade, ionic liquids, due to their unique properties, have received an increasing attention by the academic community and industry. Within their characteristics, the possibility of tune their properties allowed identifying the need to understand the relation structure-property which leaded the use of predictive models. In this work, Hildebrand solubility parameter based on Regular Solution Theory, was used to estimate solubility parameters using experimental data available for activity coefficients at infinite dilution and viscosity, aiming the establishment of a solubility parameters scale for ionic liquids. The use of activity coefficients at infinite dilution allowed observing that ionic liquids have amphiphilic (chameleonic) behaviour, and with viscosity it was observed that they act predominantly as polar molecules. In this work, it was also measured solubilities for 1-butyl-3-methylimidazolium hexafluorophosphate in mixtures of water and 1-propanol and in mixture of 1- propanol and toluene. This procedure allowed to confirm the behaviour (chameleonic effect) described by solubility parameters estimated by activity coefficients at infinite dilution. In the estimation of solubility parameters, some non-conformities were observed and which can be explained by the fact that the Hildebrand solubility parameter does not detail molecule polarity or specific interactions, and the structure of ionic liquids is clearly more complex than it is taken account. In this matter, other extensions for Hildebrand solubility parameter are suggested.
Rebiai, R. "The solubility of water in cryogenic liquids and the related effects". Thesis, University of Southampton, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356094.
Pełny tekst źródłaTick, Geoffrey Ray. "Dissolution and enhanced solubilization of immiscible phase organic liquids in porous media : Theoretical, laboratory, and field investigations". Diss., The University of Arizona, 2003. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2003_398_sip1_w.pdf&type=application/pdf.
Pełny tekst źródłaTomlinson, Sean R. "The solubility and secondary structure of zein in imidazolium-based ionic liquids". Diss., Kansas State University, 2013. http://hdl.handle.net/2097/15511.
Pełny tekst źródłaDepartment of Chemical Engineering
Jennifer L. Anthony
Ionic liquids are low melting salts composed of an organic cation and an inorganic or organic anion. Ionic liquids are of interest for their wide range of applications and unique properties, such as the negligible vapor pressure of some types of ionic liquids, and the ability to modify ionic liquid properties by selection of the cation or anion. It has been hypothesized that over one million binary ionic liquids (meaning a single cation/anion pair) are possible. Due to the vast number of potential combinations, it should be possible to design ionic liquids specifically for an application of interest. One potential application is their use as protein solvents. However there is little understanding of how ionic liquids affect proteins. This research examined the solubility and secondary structure of the hydrophobic corn protein zein in seven ionic liquids and three conventional solvents as a function of temperature and solvent properties. Zein’s solubility in the solvents was measured gravimetrically from 30 to 60 degrees Celsius. Solubility was then related to solvent properties to gain an understanding of what solvent properties are important, and how to design an ionic liquid to dissolve zein. It was found that a good solvent for zein has a small molecular volume, a low polarity, and is a weak hydrogen bond acceptor. Infrared spectroscopy with curve fitting was used to examine the secondary structure of zein as a function of both solvent and temperature from 25 to 95 degrees Celsius. It was found that most of the ionic liquids change zein’s secondary structure, but those secondary structure changes were not affected by temperature. Aprotic ionic liquids increase the amount of β-turn secondary structure through non-polar interactions between the mixed aromatic-alkyl imidazolium cations and the non-polar portions of the zein. Strong hydrogen bond accepting molecules were found to increase the amount of β-turn secondary structure. It is hypothesized from this research that suitable solvents for zein will have a small molar volume, low polarity, and be poor hydrogen bond acceptors. This combination of properties will enhance zein’s solubility and limit secondary structure changes that can harm protein properties.
Książki na temat "Solubility of Liquids"
Fogg, Peter G. T. Solubility of gases in liquids: A critical evaluation of gas/liquid systems in theory and practice. Chichester: J. Wiley, 1991.
Znajdź pełny tekst źródłaMeeting, American Chemical Society, i American Chemical Society. Division of Industrial and Engineering Chemistry, red. Gas-expanded liquids and near-critical media: Green chemistry and engineering. Washington, D.C: American Chemical Society, 2009.
Znajdź pełny tekst źródłaCRC handbook of polymer-liquid interaction parameters and solubility parameters. Boca Raton: CRC Press, 1990.
Znajdź pełny tekst źródłaJae-Jin, Shim, red. Solubility in supercritical carbon dioxide. Boca Raton: CRC Press, 2007.
Znajdź pełny tekst źródłaMaria Celeste de Carvalho Serra. Solubilidade de gases em água e em meios de fermentação. Lisboa: Edic̨ões Colibri, 2007.
Znajdź pełny tekst źródłaPalacios, Jose Manuel. The solubility of copper in lime-saturated and calcium ferrite-saturated liquid iron oxide. Ann Arbor, MI: UMI Dissertation Services, 1991.
Znajdź pełny tekst źródłaSiwka, Jerzy. Azot w ciekłych stopach żelaza. Częstochowa: Wydawn. Politechniki Częstochowskiej, 2006.
Znajdź pełny tekst źródłaQiu, Guang-Ming. Modification and preparation of membrane in supercritical carbon dioxide. New York: Nova Science Publishers, 2010.
Znajdź pełny tekst źródłaMulrooney, John Leonard. An investigation of a sorption apparatus to measure the solubility and diffusivity of a liquid blowing agent in a polymer at an elevated pressure. Ottawa: National Library of Canada, 1995.
Znajdź pełny tekst źródła1955-, Qiu Guang-Ming, red. Modification and preparation of membrane in supercritical carbon dioxide. Hauppauge, N.Y: Nova Science Publishers, 2009.
Znajdź pełny tekst źródłaCzęści książek na temat "Solubility of Liquids"
Krause, Sonja. "Solubility of Polymers in Liquids". W The Experimental Determination of Solubilities, 595–616. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470867833.ch15.
Pełny tekst źródłaClever, H. Lawrence, i Rubin Battino. "Solubility of Gases in Liquids". W The Experimental Determination of Solubilities, 99–150. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470867833.ch3.
Pełny tekst źródłaCohen-Adad, Roger, i Marie-Thérèse Cohen-Adad. "Solubility of Solids in Liquids". W The Experimental Determination of Solubilities, 257–314. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470867833.ch8.
Pełny tekst źródłaSzczepaniec-Cieciak, Elzbieta. "Solubility of Solids and Liquids in Cryogenic Liquids". W The Experimental Determination of Solubilities, 557–93. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470867833.ch14.
Pełny tekst źródłaZhang, Jinming, Chenyang Liu i Jun Zhang. "Solubility of Polymers in Ionic Liquids". W Encyclopedia of Ionic Liquids, 1–8. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-10-6739-6_149-1.
Pełny tekst źródłaZhang, Jinming, Chenyang Liu i Jun Zhang. "Solubility of Polymers in Ionic Liquids". W Encyclopedia of Ionic Liquids, 1202–9. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-33-4221-7_149.
Pełny tekst źródłaAim, Karel, i Maurizio Fermeglia. "Solubility of Solids and Liquids in Supercritical Fluids". W The Experimental Determination of Solubilities, 491–555. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470867833.ch13.
Pełny tekst źródłaGamsjäger, Heinz, i Erich Königsberger. "Solubility of Sparingly Soluble Ionic Solids in Liquids". W The Experimental Determination of Solubilities, 315–58. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470867833.ch9.
Pełny tekst źródłaShiflett, Mark B., i A. Yokozeki. "Solubility of Fluorocarbons in Room Temperature Ionic Liquids". W ACS Symposium Series, 21–42. Washington DC: American Chemical Society, 2009. http://dx.doi.org/10.1021/bk-2009-1030.ch002.
Pełny tekst źródłaXiao, Y., C. R. Mambote, G. A. Wierink i A. van Sandwijk. "Solubility of A12O3 in NaCl-KCl Based Molten Salt System". W Molten Salts and Ionic Liquids, 389–95. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9780470947777.ch24.
Pełny tekst źródłaStreszczenia konferencji na temat "Solubility of Liquids"
Imani, M. T., M. Farahani, M. Kuhnke, K. Homeier i P. Werle. "Measuring methods for solubility of gases in insulation liquids". W 2017 IEEE 19th International Conference on Dielectric Liquids (ICDL). IEEE, 2017. http://dx.doi.org/10.1109/icdl.2017.8124654.
Pełny tekst źródłaAsensio Delgado, Salvador, Fernando Pardo, Gabriel Zarca i Ane Urtiaga. "Solubility differences of refrigerant gases in ionic liquids". W 14th Mediterranean Congress of Chemical Engineering (MeCCE14). Grupo Pacífico, 2020. http://dx.doi.org/10.48158/mecce-14.dg.07.06.
Pełny tekst źródłaGreaves, Brad, Thomas Prevost, Ed Casserly, Griffin Burk i Ashmita Niroula. "Water Solubility of Aged Mineral Oil and Natural Ester Liquids". W 2023 IEEE 22nd International Conference on Dielectric Liquids (ICDL). IEEE, 2023. http://dx.doi.org/10.1109/icdl59152.2023.10209323.
Pełny tekst źródłaPerez, Daniel, Belen Garcia, Victor A. Primo i Juan Carlo Burgos. "Analysis of Water Solubility in natural-ester based nanodielectric fluids". W 2019 IEEE 20th International Conference on Dielectric Liquids (ICDL). IEEE, 2019. http://dx.doi.org/10.1109/icdl.2019.8796556.
Pełny tekst źródłaDeshpande, Anirudh, Prashanta Dutta i Soumik Banerjee. "Solubility of Oxygen in Lithium-Air Battery Electrolytes: A Molecular Dynamics Study". W ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-40215.
Pełny tekst źródłaYunus, Normawati M., Maizatul S. Shaharun, M. I. Abdul Mutalib i T. Murugesan. "Modeling of CO2 solubility in pyridinium-based ionic liquids using UNIQUAC". W 4TH INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES (ICFAS2016). Author(s), 2016. http://dx.doi.org/10.1063/1.4968093.
Pełny tekst źródłaSulaimon, Aliyu Adebayo, Luqman Adam Azman, Syed Ali Qasim Zohair, Bamikole Joshua Adeyemi, Azmi B. Shariff i Wan Zaireen Nisa Yahya. "Predicting the Hydrogen Storage Potential of Ionic Liquids Using the Data Analytics Techniques". W SPE Nigeria Annual International Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/217176-ms.
Pełny tekst źródłaPetrin, Lívia, Mariana da Costa i Rafael Dias. "An investigation of lignocellulosic biopolymers solubility in Protic Ionic Liquids aqueous solutions". W Congresso de Iniciação Científica UNICAMP. Universidade Estadual de Campinas, 2019. http://dx.doi.org/10.20396/revpibic2720192152.
Pełny tekst źródłaYunus, Normawati M., M. Asif Abdul Ghani i Ruzaimah Nik Mohamad Kamil. "Synthesis, characterization and CO2 solubility of [hmim][Tf2N] and [hmim][Ac] ionic liquids". W 3RD INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES (ICFAS 2014): Innovative Research in Applied Sciences for a Sustainable Future. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4898480.
Pełny tekst źródłaSen, Mihir, i Samuel Paolucci. "The Use of Ionic Liquids in Refrigeration". W ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14712.
Pełny tekst źródłaRaporty organizacyjne na temat "Solubility of Liquids"
Mountain, R. D. Molecular dynamics study of the solubility of oxygen in liquid pyridine. Gaithersburg, MD: National Institute of Standards and Technology, 2003. http://dx.doi.org/10.6028/nist.ir.7075.
Pełny tekst źródłaHOHL, T., D. PLACE i R. WITTMAN. STRONTIUM-90 LIQUID CONCENTRATION SOLUBILITY CORRELATION IN THE HANFORD TANK WASTE OPERATIONS SIMULATOR. Office of Scientific and Technical Information (OSTI), sierpień 2004. http://dx.doi.org/10.2172/828017.
Pełny tekst źródłaPark, J. H., R. Erck i E. T. Park. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys. Office of Scientific and Technical Information (OSTI), kwiecień 1997. http://dx.doi.org/10.2172/543272.
Pełny tekst źródłaLooney, Brian, Holly Vermeulen, J. Dickson, Thomas White, Andrew Boggess, Thomas Peters i Emily Fabricatore. Vapor-Liquid Partitioning of Methylmercury Compounds: Fundamental Data to Support the Savannah River Site Liquid Waste System: Henry's Law, Solubility and Vapor Pressure Determination for Representative Methylmercury Compounds. Office of Scientific and Technical Information (OSTI), czerwiec 2021. http://dx.doi.org/10.2172/1804664.
Pełny tekst źródłaLiaw, Shuh-Jeng. Automation of a hydrogen meter for use in coal liquefaction plant and for determination of the effect of aliphatic hydrocarbons on hydrogen solubility and mass transfer rate in coal liquid solvents. Office of Scientific and Technical Information (OSTI), styczeń 1989. http://dx.doi.org/10.2172/5341646.
Pełny tekst źródła