Gotowa bibliografia na temat „Solid waste biodegradation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Solid waste biodegradation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Solid waste biodegradation"
T, Siva, i P. Serfoji. "Biodegradation of different organic solid waste by using epigeic earthworms". International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (30.04.2018): 2494–99. http://dx.doi.org/10.31142/ijtsrd12791.
Pełny tekst źródłaZhang, Zhen Ying, i Da Zhi Wu. "Study on the Biodegradation Strength Properties for Municipal Solid Waste with Higher Content of Organic Matter". Applied Mechanics and Materials 71-78 (lipiec 2011): 918–22. http://dx.doi.org/10.4028/www.scientific.net/amm.71-78.918.
Pełny tekst źródłaGautam, S. P., P. S. Bundela, A. K. Pandey, R. K. Jain, P. R. Deo, S. K. Khare, M. K. Awasthi i Surendra Sarsaiya. "Biodegradation and Recycling of Urban Solid Waste". American Journal of Environmental Sciences 5, nr 5 (1.05.2009): 653–56. http://dx.doi.org/10.3844/ajessp.2009.653.656.
Pełny tekst źródłaEl-Fadel, M., A. N. Findikakis i J. O. Leckie. "Temperature Effects in Modeling Solid Waste Biodegradation". Environmental Technology 17, nr 9 (wrzesień 1996): 915–35. http://dx.doi.org/10.1080/09593331708616462.
Pełny tekst źródłaYapaev, R. R., I. R. Faskhutdinov i L. A. Nasyrova. "INVESTIGATION OF INITIATING ADDITIVE EFFECT ON BIOGAS FORMATION DURING SOLID HOUSEHOLD AND MUNICIPAL WASTE DECOMPOSITION". Problems of Gathering Treatment and Transportation of Oil and Oil Products, nr 2 (16.05.2023): 195–204. http://dx.doi.org/10.17122/ntj-oil-2023-2-195-204.
Pełny tekst źródłaWang, J. Y., O. Stabnikova, S. T. L. Tay, V. Ivanov i J. H. Tay. "Biotechnology of intensive aerobic conversion of sewage sludge and food waste into fertilizer". Water Science and Technology 49, nr 10 (1.05.2004): 147–54. http://dx.doi.org/10.2166/wst.2004.0631.
Pełny tekst źródłaWarith, Mostafa A., Walied Zekry i Neeraj Gawri. "Effect of Leachate Recirculation on Municipal Solid Waste Biodegradation". Water Quality Research Journal 34, nr 2 (1.05.1999): 267–80. http://dx.doi.org/10.2166/wqrj.1999.012.
Pełny tekst źródłaCandiani, Giovano. "MONITORING THE PROCESS OF BIODEGRADATION AND METHANE GAS GENERATION IN AN EXPERIMENTAL CELL OF MUNICIPAL SOLID WASTE IN BRAZIL". Revista Científica FAEMA 13, nr 1 (6.08.2022): 114–30. http://dx.doi.org/10.31072/rcf.v13i1.907.
Pełny tekst źródłaYunus, Anika, David J. Smallman, Anne Stringfellow, Richard Beaven i William Powrie. "Characterisation of the recalcitrant organic compounds in leachates formed during the anaerobic biodegradation of waste". Water Science and Technology 64, nr 2 (1.07.2011): 311–19. http://dx.doi.org/10.2166/wst.2011.636.
Pełny tekst źródłaKong, Dequan, Rong Wan i Yonghui Wang. "Sample Preparation Methods Affect Engineering Characteristic Tests of Municipal Solid Waste". Advances in Civil Engineering 2020 (26.06.2020): 1–13. http://dx.doi.org/10.1155/2020/9280561.
Pełny tekst źródłaRozprawy doktorskie na temat "Solid waste biodegradation"
Yagoub, Sally. "Biodegradation of leather solid waste". Thesis, University of Northampton, 2006. http://nectar.northampton.ac.uk/2675/.
Pełny tekst źródłaKelly, Ryan J. "Solid Waste Biodegradation Enhancements and the Evaluation of Analytical Methods Used to Predict Waste Stability". Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/32484.
Pełny tekst źródłaMaster of Science
Kim, Jongmin. "Effect of plastics on the lignin results for MSW and the fate of lignin in laboratory solid waste reactors". Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/35579.
Pełny tekst źródłaCellulose to lignin ratio is one of the widely used indicators of degree of landfill stabilization. This ratio shows the amount of carbohydrate or cellulose consumed by anaerobes compared to relatively inert lignin. However, the method of lignin measurement contains an intrinsic error. Plastics are contained in the landfill samples and these are characterized as lignaceous materials due to their acid-insolubility. Lignin is typically measured as the organic residue that is acid insoluble but is combustible upon ignition. Additionally lignin may degrade under anaerobic, high temperature conditions associated with wet conditions in sediments and bioreactor landfills.
In this study, it has been found that the typical measure of lignin, a gravimetric measure, also includes plastics, leading to erroneous measures of both lignin and the cellulose/lignin (C/L) ratio. Typically, 100% of the plastic will be measured as lignin. Since plastic amounts to approximately 10% of landfill contents, lignin measurements will be 10% greater than actual amounts. Laboratory reactors were set up with known amounts of paper and plastic. The degradation of the cellulose and lignin in paper was measured and compared to plastics, which was collected by hand and weighed. Ratios of cellulose to plastics and lignin to plastics were obtained. It was found, based on the cellulose to plastic ratio and lignin to plastic ration that lignin degrades under anaerobic conditions although at a much slower rate than cellulose. These findings indicate that the cellulose to lignin ratio cannot be used as the sole indicator of stabilization in the landfills. The inclusion of the biochemical methane potential test data along with C/L is thought to provide a better indication of landfill stabilization.
Master of Science
Mooder, Robert Brent. "Numerical simulation of moisture movement, anaerobic biodegradation, and dissolved organic carbon transport in municipal solid waste". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0007/MQ34394.pdf.
Pełny tekst źródłaBricker, Garrett Demyan. "Analytical Methods of Testing Solid Waste and Leachate to Determine Landfill Stability and Landfill Biodegradation Enhancement". Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/35162.
Pełny tekst źródłaMaster of Science
Gawande, Nitin. "MODELING MICROBIOLOGICAL AND CHEMICAL PROCESSES IN MUNICIPAL SOLID WASTE BIOREACTOR: DEVELOPMENT AND APPLICATIONS OF A THREE-PHA". Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3803.
Pełny tekst źródłaPh.D.
Department of Civil and Environmental Engineering
Engineering and Computer Science
Environmental Engineering PhD
Boda, Borbala. "Evaluation of Stability Parameters for Landfills". Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/34399.
Pełny tekst źródłaMaster of Science
Nair, Arjun. "Effect of Leachate Blending on Anaerobic Digestion of Organic Fraction of Municipal Solid Waste". Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/24404.
Pełny tekst źródłaMortatti, Bruno Cesar 1985. "Determinação da condutividade hidráulica e análise química do lixiviado de resíduos sólidos urbanos utilizando permeâmetros de grandes dimensões". [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/287653.
Pełny tekst źródłaDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Geociências
Made available in DSpace on 2018-08-23T20:11:00Z (GMT). No. of bitstreams: 1 Mortatti_BrunoCesar_M.pdf: 2082666 bytes, checksum: 0035bd7ef41b771d365f948dd694e18a (MD5) Previous issue date: 2013
Resumo: Dois permeâmetros de carga constante e grandes dimensões, com 0,057 e 0,042 metros cúbicos, respectivamente, foram utilizados em laboratório, sob condições controladas, para as determinações das condutividades hidráulicas saturadas de Resíduos Sólidos Urbanos (RSU) coletados no Aterro Sanitário Delta A, localizado na cidade de Campinas-SP. Duas fases experimentais foram delineadas envolvendo diferentes parâmetros como composição gravimétrica e grau de compactação. Para cada fase experimental foram realizados vários ensaios para as determinações das condutividades hidráulicas saturadas em função dos tempos de operação dos permeâmetros e levantamento das principais variáveis físicas envolvidas neste processo, como teor de umidade, capacidade de campo, carga hidráulica e vazão. Simultaneamente, os lixiviados oriundos de cada ensaio realizado foram coletados e monitorados pelas análises dos principais parâmetros e espécies químicas para avaliação das etapas envolvidas no processo de biodegradação dos RSU. As condutividades hidráulicas saturadas, determinadas nos ensaios realizados, variaram de 1,6E-02 a 5,7E-05 m/s em função dos diferentes graus de compactação. Algumas variáveis químicas se mostraram eficientes na identificação das etapas de biodegradação, como potencial redox, ácidos orgânicos voláteis, nitrogênio amoniacal, acetato e carbono total dissolvido. O comportamento dessas variáveis em função dos tempos de operação permitiu a identificação das etapas acidogênica/acetogênica na biodegradação dos RSU
Abstract: Two constant load and large dimensions permeameters, with 0.057 and 0.042 cubic meters, respectively, were used in laboratory, under controlled conditions, for the determination of saturated hydraulic conductivity of Municipal Solid Waste (MSW) collected in the Delta A Sanitary Landfill, located at city of Campinas-SP. Two experimental phases were outlined involving different parameters such as gravimetric composition and degree of compression. For each experimental phase were carried out various tests for the determination of satured hydraulic conductivity as a function of the operation times of the permeameters and physical survey of the main variables involved in this process, such as, moisture content, field capacity, hydraulic head and volumetric flow rate. Simultaneously, the leachates coming of each test performed were collected and monitored by the analysis of the main parameters and chemical species for evaluation of the steps involved in the biodegradation of MSW. The saturated hydraulic conductivities, determined in tests, ranged from 1.6E-02 to 5.7E-05 m/s for different degrees of compression. Some chemical variables such as redox potential, volatile fatty acids, ammoniac nitrogen, acetate and dissolved total carbon, were effective in identifying the stages of biodegradation. The behavior of these variables as a function of time of operation allowed the identification of the acidogenic/acetogenic steps in the biodegradation of the MSW
Mestrado
Geologia e Recursos Naturais
Mestre em Geociências
Agustini, Caroline Borges. "Isolamento microbiano na biodegradação de resíduos de curtumes". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/109147.
Pełny tekst źródłaThe tanning process waste and the increasing importance of energy generation from renewable sources make the study of alternative biodegradation ways of the waste produced by leather industry and the generation of power from it a necessity. The solid residues produced by tanneries contain chromium and are usually disposed in hazardous industrial landfills. Biogas with high methane content is the product of this decomposition by anaerobic digestion. Based on these concepts, this study proposes to perform biodegradation tests with sludge, from a tannery effluent treatment plant, and with wet-blue (leather tanned with chromium) shavings in bench bioreactors. The main objective was to isolate, quantify and identify microorganisms with potential to produce biogas with high methane content. Further, the prior storage form of the added sludge was also analyzed. First, the sludge and the wet-blue shavings were incubated in bench bioreactors (ten biodegradation tests divided into two assemblies) and quantification and qualification analysis of the generated biogas were made. Later, biomass aliquots generated in the bioreactors were collected at different growth stages. The collected biomass isolation was conducted in penicillin type injectable vial filled with culture medium propitious for methanogenic archaea growth, where it was possible to incubate in anaerobic atmosphere. From microorganisms’ growth, test of counting, depletion, Gram stain and other biomass collection of the vials themselves were carried out. As a result, the prior sludge storage influence on biodegradation tests of sludge with wet-blue shavings was not yet fully elucidated. Isolated microorganisms were not methanogenic archaea. The microorganism counting was held in two biodegradation tests with collected biomass. The first bioreactor analyzed (bioreactor 4) showed 1,90 x 109 and 4,45 x 106 CFU/mL for the precipitated solid and the supernatant liquid, respectively. The second bioreactor analyzed (bioreactor 7) showed 1,35 x 109 and 1,09 x 109 for the precipitated solid without and with added sludge in the culture medium before autoclaving, respectively, and 9,10 x 106 and 8,30 x 106 CFU/mL for the supernatant liquid without and with added sludge in the culture medium before autoclaving, respectively. Methane was only detected in vials containing collected biomass aliquots from final stages of biogas production bioreactors that were bit diluted and had high amounts of microorganisms. The percentage of methane found in these vials ranged between 25,75 and 53,66% and was detected after three weeks of incubation. The sludge homogenization proved to be a great influence factor on biodegradation. The isolation technique with penicillin type injectable vial proved to be appropriate for methanogenic microorganisms’ quantification in biodegradation tests, although it is not fully understood for the methanogenic archaea isolation.
Książki na temat "Solid waste biodegradation"
C, Palmisano Anna, i Barlaz Morton A, red. Microbiology of solid waste. Boca Raton: CRC Press, 1996.
Znajdź pełny tekst źródłaF, Diaz Luis, red. Composting and recycling municipal solid waste. Boca Raton: Lewis Publishers, 1993.
Znajdź pełny tekst źródłaWealth from waste: Trends and technologies. New Delhi: The Energy and Resources Institute, 2011.
Znajdź pełny tekst źródłaSolid waste management: Policy and planning for a sustainable society. Toronto: Apple Academic Press, 2015.
Znajdź pełny tekst źródłaVismara, Renato, Francesca Malpei i Massimo Centemero. Biogas da rifiuti solidi urbani: Tecnologia, applicazioni, utilizzo. Palermo: Dario Flaccovio editore, 2008.
Znajdź pełny tekst źródłaRada, Elena Cristina. Solid Waste Management. Taylor & Francis Group, 2021.
Znajdź pełny tekst źródłaInvestigation of Biodegradation Processes in Solid Waste Landfills. Storming Media, 1997.
Znajdź pełny tekst źródłaBarlaz, Morton A., i Anna C. Palmisano. Microbiology of Solid Waste. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaDiaz, Luis F., Clarence G. Golueke, George M. Savage i Linda L. Eggerth. Composting and Recycling Municipal Solid Waste. Taylor & Francis Group, 2017.
Znajdź pełny tekst źródłaDiaz, Luis F., Clarence G. Golueke, George M. Savage i Linda L. Eggerth. Composting and Recycling Municipal Solid Waste. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaCzęści książek na temat "Solid waste biodegradation"
Barlaz, Morton A., Bryan F. Staley i Francis L. de los Reyes. "Anaerobic Biodegradation of Solid Waste". W Environmental Microbiology, 281–99. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470495117.ch12.
Pełny tekst źródłaShweta, Nistala, i S. Keshavkant. "Impact of Enzymes Based Treatment Methods on Biodegradation of Solid Wastes for Sustainable Environment". W Waste Management, 13–39. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9780429341106-2.
Pełny tekst źródłaKozlov, Grigorii, i Mikhail Pushkarev. "Biodegradation of Chemical Waste Containing Anthracene by Municipal Solid Waste Composting". W XV International Scientific Conference “INTERAGROMASH 2022”, 2659–64. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21432-5_293.
Pełny tekst źródłaReddy, Chejarla Venkatesh, Shekhar D. Rao i Ajay S. Kalamdhad. "Impact of Precipitation on Biodegradation of Fresh Municipal Solid Waste in Anaerobic Simulated Reactor". W Integrated Approaches Towards Solid Waste Management, 303–16. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70463-6_29.
Pełny tekst źródłaLiu, Jun-Long, Han Ke, Tony L. T. Zhan i Yun-Min Chen. "Simulation Tests of Biodegradation and Compression of Municipal Solid Waste". W Advances in Environmental Geotechnics, 521–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04460-1_48.
Pełny tekst źródłaShoaf, Trevor J., i Abigail S. Engelberth. "Recycling of Multiple Organic Solid Wastes into Chemicals via Biodegradation". W Production of Biofuels and Chemicals from Sustainable Recycling of Organic Solid Waste, 205–42. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6162-4_7.
Pełny tekst źródłaRanjan, Ved Prakash, i Sudha Goel. "Biodegradation of Floral Waste Under Aerobic Conditions with Different Microbial Inocula and Aeration Methods". W Treatment and Disposal of Solid and Hazardous Wastes, 1–26. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-29643-8_1.
Pełny tekst źródłaSrivastava, Abhishek N., Rahul Singh, Sumedha Chakma i Volker Birke. "Advancements in Operations of Bioreactor Landfills for Enhanced Biodegradation of Municipal Solid Waste". W Circular Economy in Municipal Solid Waste Landfilling: Biomining & Leachate Treatment, 153–66. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07785-2_7.
Pełny tekst źródłaFelix, Mihigo, Manikandan Arjunan, Kavya Siddeshwar, Rajakumar Sundaram i Prashanthi Devi Marimuthu. "Biodegradation of Lead from Accumulated Municipal Solid Waste Using Bacterial Consortium for Effective Biomining". W Environmental Science and Engineering, 103–11. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64122-1_8.
Pełny tekst źródłaMerz, Erich R. "Biodegradation, a Non-Problem if Radioactive Raw Wastes are Properly Conditioned into a Final Solid Disposal Form?" W Microbial Degradation Processes in Radioactive Waste Repository and in Nuclear Fuel Storage Areas, 267–74. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5792-6_28.
Pełny tekst źródłaStreszczenia konferencji na temat "Solid waste biodegradation"
Cobo, N., A. López i A. Lobo. "Biodegradation stability of organic solid waste characterized by physico-chemical parameters". W WASTE MANAGEMENT 2008. Southampton, UK: WIT Press, 2008. http://dx.doi.org/10.2495/wm080171.
Pełny tekst źródłaKechaou, Nabil, i E. Ammar. "Biodrying process: a sustainable technology for treatment of municipal solid wastes organic fraction". W 21st International Drying Symposium. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.7842.
Pełny tekst źródłaHendrianie, Nuniek, Sri Rachmania Juliastuti, Fanny Husna Ar-rosyidah i Hilal Abdur Rochman. "Study utilization of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuels". W INTERNATIONAL SEMINAR ON FUNDAMENTAL AND APPLICATION OF CHEMICAL ENGINEERING 2016 (ISFAChE 2016): Proceedings of the 3rd International Seminar on Fundamental and Application of Chemical Engineering 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4982332.
Pełny tekst źródłaConstantinescu, Rodica Roxana, Gabriel Zainescu, Mariana Ferdes i Iulia Caniola. "Pelt waste degradation using active microbial consortia". W The 8th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2020. http://dx.doi.org/10.24264/icams-2020.ii.5.
Pełny tekst źródłaStelescu, Maria Daniela, Mihaela Nituica (Vilsan), Mihai Georgescu, Dana Gurău, Laurenția Alexandrescu i Maria Sönmez. "Behaviour of Nitrile Rubber-Based Mixtures to Composting Tests". W The 9th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2022. http://dx.doi.org/10.24264/icams-2022.iv.14.
Pełny tekst źródła