Gotowa bibliografia na temat „Solid-gas interaction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Solid-gas interaction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Solid-gas interaction"
Dolmatov, A. I., i S. A. Polyviany. "Interaction of Solid Particles from a Gas Stream with the Surface of a Flat Nozzle". METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 43, nr 3 (1.06.2021): 319–28. http://dx.doi.org/10.15407/mfint.43.03.0319.
Pełny tekst źródłaLi, Zhengquan, Kaiwei Chu, Renhu Pan, Aibing Yu i Jiaqi Yang. "Computational Study of Gas-Solid Flow in a Horizontal Stepped Pipeline". Mathematical Problems in Engineering 2019 (15.09.2019): 1–15. http://dx.doi.org/10.1155/2019/2545347.
Pełny tekst źródłaSharma, Renu, Karl Weiss, Michael McKelvy i William Glaunsinger. "Gas reaction chamber for gas-solid interaction studies by high-resolution TEM". Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 494–95. http://dx.doi.org/10.1017/s0424820100170207.
Pełny tekst źródłaLiu, Xiao Li, Wen Jing Si i Chun Ying Zhu. "Research on the Gas Migration Regularity of Municipal Solid Waste Landfill in the Solid-Liquid-Gas-Heat Interaction". Advanced Materials Research 243-249 (maj 2011): 2216–19. http://dx.doi.org/10.4028/www.scientific.net/amr.243-249.2216.
Pełny tekst źródłaGiampaolo, Ciriaco, i Socio A. Mottana. "A new experimental technique for gas-solid interaction studies." Rendiconti Lincei 1, nr 2 (czerwiec 1990): 165–69. http://dx.doi.org/10.1007/bf03001891.
Pełny tekst źródłaHrach, Rudolf, Jiří Šimek i Věra Hrachová. "Study of plasma—solid interaction in electronegative gas mixtures". Czechoslovak Journal of Physics 56, nr 12 (grudzień 2006): 1437–44. http://dx.doi.org/10.1007/s10582-006-0456-0.
Pełny tekst źródłaDoss, E. D., i M. G. Srinivasan. "Modeling of Wall Friction for Multispecies Solid-Gas Flows". Journal of Fluids Engineering 108, nr 4 (1.12.1986): 486–88. http://dx.doi.org/10.1115/1.3242608.
Pełny tekst źródłaWashino, K., H. S. Tan, A. D. Salman i M. J. Hounslow. "Direct numerical simulation of solid–liquid–gas three-phase flow: Fluid–solid interaction". Powder Technology 206, nr 1-2 (styczeń 2011): 161–69. http://dx.doi.org/10.1016/j.powtec.2010.07.015.
Pełny tekst źródłaZongyang, Li, Bi Lin i Chen Jianqiang. "Gas-Solid Interface Interactions Based on Molecular Dynamics Simulations". Journal of Physics: Conference Series 2235, nr 1 (1.05.2022): 012066. http://dx.doi.org/10.1088/1742-6596/2235/1/012066.
Pełny tekst źródłaYang, Youqing, Pengtao Sun i Zhen Chen. "Combined MPM-DEM for Simulating the Interaction Between Solid Elements and Fluid Particles". Communications in Computational Physics 21, nr 5 (27.03.2017): 1258–81. http://dx.doi.org/10.4208/cicp.oa-2016-0050.
Pełny tekst źródłaRozprawy doktorskie na temat "Solid-gas interaction"
Tian, Jian Atwood J. L. "Molecular organic solids for gas adsorption and solid-gas interaction". Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/6882.
Pełny tekst źródłaKHAN, BILAL ALAM. "Measurement methods of Gas-Solid Interactions". Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2942142.
Pełny tekst źródłaAkizuki, Makoto. "Gas Cluster Ion-Solid Surface Interaction and Thin Film Formation". Kyoto University, 1999. http://hdl.handle.net/2433/181783.
Pełny tekst źródłaBrancher, Ricardo. "Experimental and numerical analysis of interaction between gas and solid surface". Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0677.
Pełny tekst źródłaThis thesis is devoted to the experimental and numerical study of the interaction between gas and solid surface. Rarefied gas flows through a rectangular microchannel under both isothermal and non-isothermal conditions were experimentally evaluated. The tangential momentum accommodation coefficient for PEEK (Poly Ether Ether Ketone) material associated to five gases (helium, neon, nitrogen, argon, krypton) was extracted from both pressure and temperature gradient driven flows. Additionally, steady one-dimensional flows of a polyatomic gas in the presence of an adsorbing-desorbing surface kept at constant and uniform temperature are simulated by solving numerically the Boltzmann kinetic equation by the Direct Simulation Monte Carlo (DSMC) method. It is considered the flow of gas between two planar and infinite surfaces,where only one surface is able to adsorb and desorb molecules, while the other one is impermeable. Finally, experimental and numerical investigation were performed to analyze the BTEX (benzene, toluene,ethylbenzene and xylenes) species separation inside a chromatographic column. From calibrating the constants of adsorption and desorption, the retention time of each species can be predicted for different operating conditions using the numerical code developed
Qin, Tong. "Numerical Simulations of Interactions of Solid Particles and Deformable Gas Bubbles in Viscous Liquids". Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/19225.
Pełny tekst źródłabubbles in viscous liquids is very important in many applications,
especially in mining and chemical industries. These interactions
involve liquid-solid-air multiphase flows and an
arbitrary-Lagrangian-Eulerican (ALE) approach is used for the direct
numerical simulations. In the system of rigid particles and
deformable gas bubbles suspended in viscous liquids, the
Navier-Stokes equations coupled with the equations of motion of the
particles and deformable bubbles are solved in a finite-element
framework. A moving, unstructured, triangular mesh tracks the
deformation of the bubble and free surface with adaptive refinement.
In this dissertation, we study four problems. In the first three
problems the flow is assumed to be axisymmetric and two dimensional
(2D) in the fourth problem.
Firstly, we study the interaction between a rising deformable bubble
and a solid wall in highly viscous liquids. The mechanism of the
bubble deformation as it interacts with the wall is described in
terms of two nondimensional groups, namely the Morton number (Mo)
and Bond number (Bo). The film drainage process is also
considered. It is found that three modes of bubble-rigid wall
interaction exist as Bo changes at a moderate Mo.
The first mode prevails at small Bo where the bubble deformation
is small. For this mode, the bubble is
hard to break up and will bounce back and eventually attach
to the rigid wall. In the second mode, the bubble may break up after
it collides with the rigid wall, which is determined by the film
drainage. In the third mode, which prevails at high Bo, the bubble
breaks up due to the bottom surface catches up the top surface
during the interaction.
Secondly, we simulate the interaction between a rigid particle and a
free surface. In order to isolate the effects of viscous drag and
particle inertia, the gravitational force is neglected and the
particle gains its impact velocity by an external accelerating
force. The process of a rigid particle impacting a free surface and
then rebounding is simulated. Simplified theoretical models are
provided to illustrate the relationship between the particle
velocity and the time variation of film thickness between the
particle and free surface. Two film thicknesses are defined. The
first is the thickness achieved when the particle reaches its
highest position. The second is the thickness when the particle
falls to its lowest position. The smaller of these two thicknesses
is termed the minimum film thickness and its variation with the
impact velocity has been determined. We find that the interactions
between the free surface and rigid particle can be divided into
three regimes according to the trend of the first film thickness.
The three regimes are viscous regime, inertial regime and jetting
regime. In viscous regime, the first film thickness decreases as the
impact velocity increases. Then it rises slightly in the inertial
regime because the effect of liquid inertia becomes larger as the
impact velocity increases. Finally, the film thickness decreases
again due to Plateau-Rayleigh instability in the jetting regime.
We also find that the minimum film thickness corresponds to an
impact velocity on the demarcation point between the viscous and
inertial regimes. This fact is caused by the balance of viscous
drag, surface deformation and liquid inertia.
Thirdly, we consider the interaction between a rigid particle and a
deformable bubble. Two typical cases are simulated: (1) Collision of
a rigid particle with a gas bubble in water in the absence of
gravity, and (2) Collision of a buoyancy-driven rising bubble with a
falling particle in highly viscous liquids. We also compare our
simulation results with available experimental data. Good agreement
is obtained for the force on the particle and the shape of the
bubble.
Finally, we investigated the collisions of groups of bubbles and
particles in two dimensions. A preliminary example of the oblique
collision between a single particle and a single bubble is conducted
by giving the particle a constant acceleration. Then, to investigate
the possibility of particles attaching to bubbles, the interactions
between a group of 22 particles and rising bubbles are studied. Due
to the fluid motion, the particles involved in central collisions
with bubbles have higher possibilities to attach to the bubble.
Ph. D.
Hackett, Gregory A. "Interaction of nickel-based SOFC anodes with trace contaminants from coal-derived synthesis gas". Morgantown, W. Va. : [West Virginia University Libraries], 2009. http://hdl.handle.net/10450/10728.
Pełny tekst źródłaTitle from document title page. Document formatted into pages; contains xii, 122 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 115-122).
Ghosalya, M. K. "Gas-solid surface interaction with reactive and less reactive gases : a near ambient pressure photoelectron spectroscopy study". Thesis(Ph.D.), CSIR- National Chemical Laboratory, Pune, 2018. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/4578.
Pełny tekst źródłaAcSIR
Jain, R. "Gas-solid interaction and its influence in electronic structure and catalysis: a near ambient pressure photoelectron spectroscopy study". Thesis(Ph.D.), CSIR-National Chemical Laboratory, 2018. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/4541.
Pełny tekst źródłaCSIR
AcSIR
Mohammad, Hasan Abid Urf Turabe Ali. "Ammonia gas adsorption on metal oxide nanoparticles". Thesis, Kansas State University, 2011. http://hdl.handle.net/2097/13094.
Pełny tekst źródłaDepartment of Mechanical and Nuclear Engineering
Steven J. Eckels
NanoActiveTM metal oxide particles have the ability to destructively adsorb organophosphorus compounds and chlorocarbons. These nanomaterials with unique surface morphologies are subjected to separate, low concentrations of gaseous ammonia in air. NanoActiveTM materials based on magnesium oxide have large specific surface areas and defective sites that enhance surface reactivity and consequently improved adsorptivity. In gas contaminant removal by adsorption, presence of vast specific surface area is essential for effective gas-solid interaction to take place. This is also the case in many industrial and chemical applications such as purification of gases, separation and recovery of gases, catalysis etc,. Typically carbonaceous compounds are utilized and engineered in toxic gas control systems. The purpose of this study was to compare NanoActiveTM materials with carbon based compounds in the effectivity of toxic gas adsorption at low concentrations. A test facility was designed to investigate the adsorption properties of novel materials such as adorption capacity and adsorption rate. Adsorption capacity along with adsorption kinetics is a function of properties of the adsorbent and the adsorbate as well as experimental conditions. Nanomaterials were placed on a silica matrix and tested with increasing flow rates. Electrochemical sensing devices were placed at inlet and outlet of the facility to monitor real time continuous concentration profiles. Breakthrough curves were obtained from the packed bed column experiments and saturation limits of adsorbents were measured. Adsorption rates were obtained from the breakthrough curves using modified Wheeler-Jonas equation. The NanoActiveTM materials adsorbed ammonia though to a lesser extent than the Norit® compounds. This study also included measurement of pressure drop in packed beds. This information is useful in estimating energy losses in packed bed reactors. Brauner Emmet Teller tests were carried out for the calculation of surface area, pore volume and pore size of materials. These calculations suggest surface area alone had no notable influence on adsorption capacity and adsorption rates. This lead to the conclusion that adsorption was insignificant cause of absence of functional groups with affinity towards ammonia. In brief, adsorption of ammonia is possible on NanoActiveTM materials. However functional groups such as oxy-flouro compounds should be doped with novel materials to enhance the surface interactions.
Niaki, Seyed Reza Amini. "Effects of inter particle friction on the meso-scale hydrodynamics of dense gas-solid fluidized flows". Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/18/18147/tde-10122018-165927/.
Pełny tekst źródłaReatores de leito fluidizado de escoamento gás-sólido são largamente utilizados nas indústrias química e de energia, e o seu projeto e escalonamento são virtualmente empíricos, extremamente caros e demorados. Este cenário tem motivado o desenvolvimento de ferramentas teóricas alternativas, e a modelagem de dois fluidos, onde gás e particulado são ambos tratados com fases contínuas interpenetrantes, tem surgido como uma aproximação muito promissora. Devido aos grandes domínios a serem resolvidos em reatores de leito fluidizado de escala real, apenas aproximações de modelagem filtradas são viáveis, e modelos de fechamento tornam-se necessários para recuperar efeitos sub-malha que são filtrados pelas malhas numéricas grosseiras que são impostas devido as limitações computacionais. Estes modelos de fechamento, que em formulações hidrodinâmicas respondem principalmente por trocas de momentum filtradas entre fases e tensões filtradas e residuais nas fases, podem ser obtidos de resultados de simulações altamente resolvidas (SAR) realizadas em domínios de dimensões reduzidas sob malhas numéricas refinadas. Uma aproximação largamente praticada consiste na aplicação de modelagem de dois fluidos sob fechamentos definidos na micro-escala, genericamente conhecida como modelagem microscópica de dois fluidos. Esta aproximação inclui fechamentos microscópicos para tensões da fase sólida obtidos da teoria cinética dos escoamentos granulares (TCEG), que considera apenas efeitos cinéticos-colisionais, e é adequada para escoamentos diluídos. Por outro lado, a TCEG convencional não leva em conta efeitos de fricção interpartículas, e sua aplicação para condições densas de escoamento é bastante questionável. Neste trabalho aplica-se uma versão modificada da TCEG disponível na literatura que também leva em conta fricção interpartículas, e simulações altamente resolvidas são realizadas para condições de escoamentos densos visando avaliar os efeitos da fricção sobre os parâmetros filtrados relevantes (coeficiente de arrasto efetivo, tensões filtradas e residuais). Considera-se faixas de frações volumétricas de sólido e números de Reynolds do gás médios no domínio (condições de macro-escala) abrangendo escoamentos gás-sólido fluidizados densos desde suspensões até transporte pneumático. O código aberto MFIX é utilizado em todas as simulações, que foram executadas sobre domínios periódicos 2D para um único particulado monodisperso. Os resultados das SAR (i.e., campos de escoamento de meso-escala) foram filtrados sobre regiões compatíveis com tamanhos de malha praticados em simulações de grandes escalas, e os parâmetros filtrados relevantes de interesse são calculados e classificados por faixas de outros parâmetros filtrados tomados como variáveis independentes (fração volumétrica de sólido filtrada, velocidade de deslizamento filtrada, e energia cinética das flutuações de velocidade da fase sólida filtrada, que são referidos como marcadores). Os resultados mostram que os parâmetros filtrados relevantes de interesse são bem correlacionados com todos os marcadores, e também com todas as condições de macro-escala impostas. Por outro lado, a fricção interpartículas não mostrou efeitos significativos sobre qualquer parâmetro filtrado. Reconhece-se que este aspecto claramente requer investigações adicionais, notadamente com respeito à adequação dos marcadores que foram considerados para classificação dos resultados filtrados. O trabalho corrente é posto como uma contribuição para o desenvolvimento futuro de modelos de fechamento mais acurados para simulações de grandes escalas de escoamentos gás-sólido fluidizados.
Książki na temat "Solid-gas interaction"
Hedahl, Marc O. Comparisons of the Maxwell and CLL gas/surface interaction models using DSMC. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Znajdź pełny tekst źródłaG, Wilmoth Richard, i Langley Research Center, red. Comparisons of the Maxwell and CLL gas/surface interaction models using DSMC. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Znajdź pełny tekst źródłaJ, Singh D., Old Dominion University. Dept. of Mechanical Engineering and Mechanics. i Langley Research Center, red. Interaction of transient radiation in nongray gaseous systems: Progress report for the period ending December 31, 1986 (a supplementary report). Norfolk, Va: Dept. of Mechanical Engineering and Mechanics, College of Engineering & Technology, Old Dominion University, 1987.
Znajdź pełny tekst źródłaBilling, Gert D. Dynamics of molecule surface interactions. New York: Wiley, 2000.
Znajdź pełny tekst źródłaA, Hoffbauer Mark, i Lyndon B. Johnson Space Center., red. Measurement of momentum transfer coefficients for H₂, N₂, CO, and CO₂ incident upon spacecraft surfaces. Houston, Tex: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, 1997.
Znajdź pełny tekst źródłaNATO Advanced Study Institute on the Physics of the Two-Dimensional Electron Gas (1986 Oostduinkerke, Belgium). The physics of the two-dimensional electron gas. New York: Plenum Press, 1987.
Znajdź pełny tekst źródłaMahmoud, Mohamed, i Ibnelwaleed A. Hussein. Fluid-Solid Interactions in Upstream Oil and Gas Applications. Elsevier, 2023.
Znajdź pełny tekst źródłaMahmoud, Mohamed, i Ibnelwaleed A. Hussein. Fluid-Solid Interactions in Upstream Oil and Gas Applications. Elsevier, 2023.
Znajdź pełny tekst źródłaPhysical interactions and energy exchange at the gas-solid interface. London: Faraday Division, Royal Society of Chemistry, 1985.
Znajdź pełny tekst źródłaDevreese, J. T., i F. M. Peeters. The Physics of the Two-Dimensional Electron Gas: Proceedings of a Nato Advanced Study Institute on the Physics of the Two-Dimensional Electron Gas, H (Nato a S I Series Series B, Physics). Springer, 1987.
Znajdź pełny tekst źródłaCzęści książek na temat "Solid-gas interaction"
Kreuzer, Hans Jürgen, i Zbigniew Wojciech Gortel. "Gas-Solid Interaction". W Physisorption Kinetics, 23–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82695-5_2.
Pełny tekst źródłaAnděra, L., i E. Smolková-Keulemansová. "The Effect of Water Vapour on the Cyclodextrin-Solute Interaction in Gas-Solid Chromatography". W Inclusion Phenomena in Inorganic, Organic, and Organometallic Hosts, 289–97. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3987-5_51.
Pełny tekst źródłaBourloutski, E., i M. Sommerfeld. "Euler/Lagrange Calculations of Gas-Liquid-Solid-Flows in Bubble Columns with Phase Interaction". W Bubbly Flows, 243–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18540-3_19.
Pełny tekst źródłaGrimley, T. B. "Gas-Surface Interactions". W Interaction of Atoms and Molecules with Solid Surfaces, 25–52. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-8777-0_2.
Pełny tekst źródłaGrabke, H. J. "Solid-Gas and Solid-Solid Interactions of Ceramic Oxides at High Temperatures". W Surfaces and Interfaces of Ceramic Materials, 599–624. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1035-5_38.
Pełny tekst źródłaZolotov, Mikhail Yu. "10. Gas–Solid Interactions on Venus and Other Solar System Bodies". W High Temperature Gas-Solid Reactions in Earth and Planetary Processes, redaktorzy Penelope King, Bruce Fegley i Terry Seward, 351–92. Berlin, Boston: De Gruyter, 2018. http://dx.doi.org/10.1515/rmg.2018.84.10.
Pełny tekst źródłaDalby, Kim N., Jeff A. Berger, Helen E. A. Brand, Julie M. Cairney, Katja Eder, Stephen M. Eggins, Anna Herring i in. "4. Analytical Techniques for Probing Small-Scale Layers that Preserve Information on Gas–Solid Interactions". W High Temperature Gas-Solid Reactions in Earth and Planetary Processes, redaktorzy Penelope King, Bruce Fegley i Terry Seward, 103–76. Berlin, Boston: De Gruyter, 2018. http://dx.doi.org/10.1515/rmg.2018.84.4.
Pełny tekst źródłaMeijer, Michel D., Robertus J. M. Klein Gebbink i Gerard van Koten. "Solid-Gas Interactions Between Small Gaseous Molecules and Transition Metals in the Solid State. Toward Sensor Applications". W Crystal Design: Structure and Function, 375–86. Chichester, UK: John Wiley & Sons, Ltd, 2003. http://dx.doi.org/10.1002/0470868015.ch9.
Pełny tekst źródłaLadd, Anthony J. C. "Dissipative and Fluctuating Hydrodynamic Interactions between Suspended Solid Particles via Lattice-Gas Cellular Automata". W Computer Simulation in Materials Science, 481–504. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3546-7_26.
Pełny tekst źródłaWang, Chu, i Lucy T. Zhang. "Building a Numerical Framework to Model Gas-Liquid-Solid Interactions Using Meshfree Interpolation Methods". W Meshfree Methods for Partial Differential Equations VIII, 209–31. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51954-8_11.
Pełny tekst źródłaStreszczenia konferencji na temat "Solid-gas interaction"
Peratta, A. "Numerical modelling of gas-solid interface for homogeneous propellant combustion". W FLUID STRUCTURE INTERACTION/MOVING BOUNDARIES 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/fsi070271.
Pełny tekst źródłaZhang, Xinyu, i Goodarz Ahmadi. "Roles of Neutrally Buoyant Particles in Gas-Liquid-Solid Flows". W ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72038.
Pełny tekst źródłaSedrez, Thiana A., i Siamack A. Shirazi. "The Effect of Phase Interaction Forces and Particle Rotation on Solid Particle Erosion in Liquid-Solid and Liquid-Gas-Solid Flows". W ASME 2022 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/fedsm2022-86755.
Pełny tekst źródłaJain, Kunal, i J. J. McCarthy. "Discrete Characterization of Cohesion in Gas-Solid Flows". W ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32491.
Pełny tekst źródłaMansoori, Z., A. Dadashi, M. Saffar-Avval, F. Behzad i G. Ahmadi. "Three-Dimensional Simulation of Turbulent Gas-Solid Flow and Heat Transfer in a Pipe". W ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78007.
Pełny tekst źródłaIwata, Ryuichi, Takeo Kajishima i Shintaro Takeuchi. "Interaction Between Multiple Solid Objects and Bubbles". W ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40180.
Pełny tekst źródłaTsai, Alex, Larry Banta, David Tucker i Randall Gemmen. "RGA Analysis of a Solid Oxide Fuel Cell Gas Turbine Hybrid Plant". W ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65070.
Pełny tekst źródłaTimokhin, M. Yu, I. E. Ivanov i I. A. Kryukov. "2D numerical simulation of gas flow interaction with a solid wall by regularized Grad's set of equations". W 28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4769630.
Pełny tekst źródłaFavre, M., L. S. Caballero, F. Guzman, H. M. Ruiz, H. Bhuyan, H. Chuaqui i E. S. Wyndham. "Interaction between a laser produced plasma and a solid substrate, in a low pressure neutral background gas". W 2012 IEEE 39th International Conference on Plasma Sciences (ICOPS). IEEE, 2012. http://dx.doi.org/10.1109/plasma.2012.6383679.
Pełny tekst źródłaEmami, Tooran, Alex Tsai i David Tucker. "Robust PID Controller Design of a Solid Oxide Fuel Cell Gas Turbine". W ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2016 Power Conference and the ASME 2016 10th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fuelcell2016-59602.
Pełny tekst źródłaRaporty organizacyjne na temat "Solid-gas interaction"
Celik, I., i G. Q. Zhang. Engineering models for the gas-solid motion and interaction in the return loop of circulating fluidized beds. Topical report, January 1992--June 1992. Office of Scientific and Technical Information (OSTI), sierpień 1992. http://dx.doi.org/10.2172/10184725.
Pełny tekst źródłaVera, Jose, i Ken Evans. PR186-203600-Z01 Impact of Drag Reducing Agents on Corrosion Management. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), październik 2021. http://dx.doi.org/10.55274/r0012177.
Pełny tekst źródłaAvnimelech, Yoram, Richard C. Stehouwer i Jon Chorover. Use of Composted Waste Materials for Enhanced Ca Migration and Exchange in Sodic Soils and Acidic Minespoils. United States Department of Agriculture, czerwiec 2001. http://dx.doi.org/10.32747/2001.7575291.bard.
Pełny tekst źródła