Gotowa bibliografia na temat „Solar thermal power generation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Solar thermal power generation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Solar thermal power generation"
Verma, Rahul, i Dr Deepika Chauhan. "Solar and Thermal Power Generation". International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (30.04.2018): 1071–74. http://dx.doi.org/10.31142/ijtsrd11190.
Pełny tekst źródłaKarni, Jacob. "SOLAR-THERMAL POWER GENERATION". Annual Review of Heat Transfer 15, nr 15 (2012): 37–92. http://dx.doi.org/10.1615/annualrevheattransfer.2012004925.
Pełny tekst źródłaSukhatme, S. P. "Solar thermal power generation". Journal of Chemical Sciences 109, nr 6 (grudzień 1997): 521–31. http://dx.doi.org/10.1007/bf02869211.
Pełny tekst źródłaHu, Eric, YongPing Yang, Akira Nishimura, Ferdi Yilmaz i Abbas Kouzani. "Solar thermal aided power generation". Applied Energy 87, nr 9 (wrzesień 2010): 2881–85. http://dx.doi.org/10.1016/j.apenergy.2009.10.025.
Pełny tekst źródłaWang, Xi Bo, Ya Lin Lei i Min Yao. "China's Thermal Power Generation Forecasting Based on Generalized Weng Model". Advanced Materials Research 960-961 (czerwiec 2014): 503–9. http://dx.doi.org/10.4028/www.scientific.net/amr.960-961.503.
Pełny tekst źródłaLiu, Yudong, Fangqin Li, Jianxing Ren, Guizhou Ren, Honghong Shen i Gang Liu. "Solar thermal power generation technology research". E3S Web of Conferences 136 (2019): 02016. http://dx.doi.org/10.1051/e3sconf/201913602016.
Pełny tekst źródłaDaryabi, Shaik, i Pentakota Sai Sampth. "250KW Solar Power with MPPT Hybrid Power Generation Station". International Journal for Research in Applied Science and Engineering Technology 10, nr 12 (31.12.2022): 346–53. http://dx.doi.org/10.22214/ijraset.2022.47864.
Pełny tekst źródłaWang, Zhihang, Zhenhua Wu, Zhiyu Hu, Jessica Orrego-Hernández, Erzhen Mu, Zhao-Yang Zhang, Martyn Jevric i in. "Chip-scale solar thermal electrical power generation". Cell Reports Physical Science 3, nr 3 (marzec 2022): 100789. http://dx.doi.org/10.1016/j.xcrp.2022.100789.
Pełny tekst źródłaHou, Hong Juan, Jian Mao, Chuan Wen Zhou i Min Xing Zhang. "Solar-Coal Hybrid Thermal Power Generation in China". Advanced Materials Research 347-353 (październik 2011): 1117–26. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.1117.
Pełny tekst źródłaFu, Qiang, Chengxi Fu, Peng Fu i Yuke Deng. "Application of Green Power Generation Technology for Distributed Energy". E3S Web of Conferences 329 (2021): 01021. http://dx.doi.org/10.1051/e3sconf/202132901021.
Pełny tekst źródłaRozprawy doktorskie na temat "Solar thermal power generation"
Omer, Siddig Adam. "Solar thermoelectric system for small scale power generation". Thesis, Loughborough University, 1997. https://dspace.lboro.ac.uk/2134/7440.
Pełny tekst źródłaSharma, Chandan. "Techno-economics of solar thermal power generation in india". Thesis, IIT Delhi, 2016. http://localhost:8080/xmlui/handle/12345678/6985.
Pełny tekst źródłaKamanzi, Janvier. "Thermal electric solar power conversion panel development". Thesis, Cape Peninsula University of Technology, 2017. http://hdl.handle.net/20.500.11838/2527.
Pełny tekst źródłaThe world has been experiencing energy-related problems following pressuring energy demands which go along with the global economy growth. These problems can be phrased in three paradoxical statements: Firstly, in spite of a massive and costless solar energy, global unprecedented energy crisis has prevailed, resulting in skyrocketing costs. Secondly, though the sun releases a clean energy, yet conventional plants are mainly being run on unclean energy sources despite their part in the climate changes and global warming. Thirdly, while a negligible percentage of the solar energy is used for power generation purposes, it is not optimally exploited since more than its half is wasted in the form of heat which contributes to lowering efficiency of solar cells and causes their premature degradation and anticipated ageing. The research is geared at addressing the issue related to unsatisfactory efficiencies and anticipated ageing of solar modules. The methodology adopted to achieve the research aim consisted of a literature survey which in turn inspired the devising of a high-efficiency novel thermal electric solar power panel. Through an in-depth overview, the literature survey outlined the rationale of the research interest, factors affecting the performance of PVs as well as existing strategies towards addressing spotted shortcomings. While photovoltaic (PV) panels could be identified as the most reliable platform for sunlight-to-electricity conversion, they exhibit a shortcoming in terms of following the sun so as to maximize exposure to sunlight which negatively affects PVs’ efficiencies in one hand. On the other hand, the inability of solar cells to reflect the unusable heat energy present in the sunlight poses as a lifespan threat. Strategies and techniques in place to track the sun and keep PVs in nominal operational temperatures were therefore reviewed.
Pierce, Warrick Tait. "Solar assisted power generation (SAPG) : investigation of solar preheating of feedwater". Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80139.
Pełny tekst źródłaENGLISH ABSTRACT: Solar Assisted Power Generation (SAPG) can be seen as a synergy of solar and fossil plants – combining the environmental benefits of the former and the scale, efficiency and reliability of the latter. SAPG offers great potential for cost effective utilization of solar energy on utility scale and could accelerate the adoption of solar thermal energy technologies in the short and medium term, especially in countries with a significant coal base and a good solar resource such as Australia, China, United States, India and South Africa. SAPG is the replacement of bled-off steam in a Regenerative Rankine power cycle. Power plant simulations were performed using weather data for Lephalale, South Africa (Matimba power station). With an increase in the solar field outlet temperature, an increase in overall solar to electric efficiency was observed, superior to a stand-alone Solar Thermal Power Plant(s) (STPP) at similar temperatures. The performance of four solar collector technologies was compared: flat plate, evacuated tube, Linear Fresnel (LF) and Parabolic Trough (PT). This comparison was limited to the normal incidence angles of irradiation. For this application, nonconcentrating technologies are not competitive. For non-normal incidence angles, annual simulations were limited to PT and LF at final feedwater heater temperatures. The actual aperture area of around 80 000 m2 was used (50 MW thermal based on LF). On an equal aperture area basis, PT outperforms LF significantly. For the conventional North-South arrangement, LF needs to be around 53% of the specific installation cost (in $/m2 aperture area) of PT to be cost competitive. A SAPG plant at Lephalale was compared to a stand-alone Solar Thermal Power Plant STPP in a good solar resource area, namely Upington, South Africa – Parabolic Trough solar collector fields of equal size were considered for both configurations. It was found that the annual electricity generated with a SAPG plant is more than 25% greater than a stand-alone STPP. If the cost of SAPG is taken as 72% of the cost of a stand-alone STPP, this translates into SAPG being 1.8 times more cost effective than stand-alone STPP. Furthermore, SAPG performs better in high electricity demand months (South African winter – May to August). Stand-alone STPP have been adopted in South Africa and are currently being built. This was achieved by the government creating an attractive environment for Independent Power Producers (IPP). Eskom, the national power supplier, is currently investigating solar boosting at existing Eskom sites. This report argues that on a national level, SAPG, specifically solar preheating of feedwater, is a more viable solution for South Africa, with both its significant coal base and good solar resource.
AFRIKAANSE OPSOMMING: Son ondersteunde krag generasie (SOKG) kan gesien word as sinergie van sonkrag en fossiele brandstof aanlegte – dit voeg die omgewings voordele van die eersgenoemde en die grote, effektiwiteit en betroubaarheid van die laasgenoemde by mekaar. SOKG opper groot potensiaal vir koste effektiewe gebruik van son energie op nutsmaatskappyskaal en kan die aanvaarding van sontermiese energietegnologieë in die kort en medium termyn versnel, veral in lande met beduidende kool reserwes en goeie sonkrag voorkoms soos Australië, China, Verenigde State van Amerika, Indië en Suid-Afrika. SOKG impliseer die vervanging van aftap stoom in die regeneratiewe Rankine krag kringloop. Kragstasie simulasies was gedoen met die gebruik van weer data van Lephalale, Suid-Afrika (Matimba kragstasie). Met die toename van die sonveld uitlaat temperatuur kon oorhoofse son-na-elektrisiteit effektiwiteit vasgestel word, wat hoër is as die van alleenstaande sontermiese krag stasie (STKS) by soortgelyke temperature. Die effektiwiteit van vier son kollekteerder tegnologieë was vergelyk: plat plaat, vakuum buis, lineêre Fresnel (LF) en paraboliese trog (PT). Die vergelyking was beperk tot normale inval van bestraling. Vir hierdie toepassing is nie-konsentreerende tegnologie nie mededingend nie. Vir nie-normale inval hoeke was jaarlange simulasies beperk tot PT en LF by finale voedingswater temperatuur. Die werklike opening area van omtrent 80 000 m2 was gebruik (50 MW termies gebaseer op LF). By gelyke opening area, uitpresteer PT LF beduidend. Vir die gebruiklike Noord-Suid rankskikking benodig LF omtrent 53% van die spesifieke installasie kostes (in $/m2 opening area) van PT om kostes mededingend te kan wees. ‘n SOKG aanleg by Lephalale was vergelyk met alleenstaande STKS in die goeie son voorkoms gebied van Upington, Suid-Afrika – Paraboliese trog kollekteerder velde van gelyke grote was oorweeg vir al twee konfigurasies. Dit was gevind dat die jaarlikse elektrisiteit gegenereer vanaf SOKG meer as 25% is as die van alleenstaande STKS. Indien SOKG oorweeg word met 72% van die kostes van alleenstaande STKS, dan beteken dit dat SOKG 1.8 keer meer koste effektief is as alleenstade STKS. Verder, SOKG presteer beter in die hoer elektrisiteitsnavraag maande (Suid- Afrikaanse winter – May tot Augustus). Alleenstaande STKS is gekies vir Suid-Afrika en word tans gebou. Dit is bereik deur dat die regering ‘n aantreklike omgewing geskep het vir onafhanglike krag produsente. Eskom ondersoek tans SOKG by bestaande Eskom persele. Hierdie verslag beweer dat op nasionale/Eskom vlak, SOKG, besonders son voorverhitting van voedingswater, meer haalbare oplossing is vir Suid-Afrika met sy beduidende koolreserwes en goeie son voorkoms.
Desai, Ranjit. "Thermo-Economic Analysis of a Solar Thermal Power Plant with a Central Tower Receiver for Direct Steam Generation". Thesis, KTH, Kraft- och värmeteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-131764.
Pełny tekst źródłaSun, Amy (Amy Teh-Yu). "Field fabrication of solar-thermal powered stream turbines for generation of mechanical power". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37400.
Pełny tekst źródłaIncludes bibliographical references (p. 65).
Providing adequate energy to developing countries is one of the greatest global technical challenges today. Fabrication is undergoing a revolution that parallels the digitization of computation and communications. Emerging affordable, "desktop" fabrication tools are providing the precision and repeatability necessary for regular people to design, manufacture, and install a system to convert solar thermal energy to useful work. In the spectrum of devices that use solar energy, this field-fabricated system exists in a space between crude solar cookers for heating food and complex, expensive photovoltaic cells. Computer control and high precision allows regular people to experimentally converge on a locally-appropriate design and implementation to solve the challenge of providing energy. This thesis describes a field producible, small-scale turbine that uses solar thermal energy to provide mechanical energy. I investigate a solar thermal steam-driven turbine system and build and evaluate several versions in field fabrication lab locations around the world. I consider the efficacy of deployment in rural developing areas.
by Amy Sun.
S.M.
Assembe, Cedric Obiang. "Integrated solar photovoltaic and thermal system for enhanced energy efficiency". Thesis, Cape Peninsula University of Technology, 2016. http://hdl.handle.net/20.500.11838/2387.
Pełny tekst źródłaSouth Africa has raised concerns regarding the development of renewable energy sources such as wind, hydro and solar energy. Integration of a combined photovoltaic and thermal system was considered to transform simultaneous energy into electricity and heat. This was done to challenge the low energy efficiency observed when the two solar energy conversion technologies are employed separately, in order to gain higher overall energy efficiency and ensure better utilization of the solar energy. Therefore, the notion of using a combined photovoltaic and thermal system was to optimize and to improve the overall PV panel efficiency by adding conversion to thermal energy for residential and commercial needs of hot water or space heating or space cooling using appropriate technology. The PV/T model constructed using water as fluid like the one used for the experimental work, presented a marginal increase in electrical efficiency but a considerable yield on the overall PV/T efficiency, because of the simultaneous operation by coupling a PV module with a thermal collectors.
Muhammad, Mubarak Danladi. "Development of a cascaded latent heat storage system for parabolic trough solar thermal power generation". Thesis, Cranfield University, 2014. http://dspace.lib.cranfield.ac.uk/handle/1826/9303.
Pełny tekst źródłaKumbasar, Serdar. "Techno-Economic Assessment of Solar PV/Thermal System for Power and Cooling Generation in Antalya, Turkey". Thesis, KTH, Tillämpad termodynamik och kylteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-119608.
Pełny tekst źródłaHoward, Dustin F. "Modeling, simulation, and analysis of grid connected dish-stirling solar power plants". Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34832.
Pełny tekst źródłaKsiążki na temat "Solar thermal power generation"
M, Becker, Klimas Paul C, Chavez James M, Kolb Gregory J, Meinecke W, Deutsche Forschungsanstalt für Luft- und Raumfahrt. i Sandia National Laboratories, red. Second generation central receiver technologies: A status report. Karlsruhe: C.F. Müller, 1993.
Znajdź pełny tekst źródłaCo, Business Communications, red. Solar thermal and photovoltaics: World growth markets. Norwalk, CT: Business Communications Co., 1991.
Znajdź pełny tekst źródłaRobert, Moran. Solar thermal and photovoltaics: World growth markets. Norwalk, CT: Business Communications Co., 1996.
Znajdź pełny tekst źródłaS, Mehos Mark, i National Renewable Energy Laboratory (U.S.), red. Enabling greater penetration of solar power via the use of CSP with thermal energy storage. Golden, CO: National Renewable Energy Laboratory, 2011.
Znajdź pełny tekst źródłaLi, Jing. Structural Optimization and Experimental Investigation of the Organic Rankine Cycle for Solar Thermal Power Generation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45623-1.
Pełny tekst źródłaPerez-Davis, Marla E. Sensible heat receiver for solar dynamic space power system. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Znajdź pełny tekst źródłaFeuermann, D. Analysis and evaluation of the Paz solar thermal system at the Ben-Gurion Sede Boqer Test Center for Solar Electricity Generating Technologies. [Jerusalem?]: State of Israel, Ministry of Energy & Infrastructure, Division of Research & Development, 1990.
Znajdź pełny tekst źródłaKrauter, Stefan C. W. Solar electric power generation - photovoltaic energy systems: Modeling of optical and thermal performance, electrical yield, energy balance, effect on reduction of greenhouse gas emissions. Berlin: Springer, 2006.
Znajdź pełny tekst źródłaFunctional materials for sustainable energy applications. Oxford: Woodhead Pub., 2012.
Znajdź pełny tekst źródłaForum on New Materials (5th 2010 Montecatini Terme, Italy). New materials II: Thermal-to-electrical energy conversion, photovoltaic solar energy conversion and concentrating solar technologies : proceedings of the 5th Forum on New Materials, part of CIMTEC 2010, 12th International Ceramics Congress and 5th Forum on New Materials, Montecatini Terme, Italy, June 13-18, 2010. Stafa-Zurich, Switzerland: Trans Tech Publications, 2011.
Znajdź pełny tekst źródłaCzęści książek na temat "Solar thermal power generation"
Awasthi, Rajeev, Shubham Jain, Ram Kumar Pal i K. Ravi Kumar. "Solar Thermal Power Generation". W Energy Systems in Electrical Engineering, 35–77. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6456-1_3.
Pełny tekst źródłaShah, Yatish T. "Advanced Solar Thermal Power Systems". W Advanced Power Generation Systems, 169–244. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003328087-5.
Pełny tekst źródłaBlazev, Anco S. "Solar Thermal Technologies". W Photovoltaics for Commercial and Utilities Power Generation, 15–26. New York: River Publishers, 2020. http://dx.doi.org/10.1201/9781003151630-2.
Pełny tekst źródłaPfund, Philip A., i John F. Hoosic. "Electric Power Generation Study for the Dominican Republic". W Solar Thermal Central Receiver Systems, 199–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82910-9_13.
Pełny tekst źródłaNorton, Brian. "Solar Thermal Power Generation and Industrial Process Heat". W Lecture Notes in Energy, 123–43. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7275-5_7.
Pełny tekst źródłaHafner, Manfred, i Giacomo Luciani. "Economics of Power Generation". W The Palgrave Handbook of International Energy Economics, 103–9. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86884-0_5.
Pełny tekst źródłaDirks, J. A. "Central Receiver Costs for Electric Power Generation". W Thermo-Mechanical Solar Power Plants, 307–11. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5402-1_45.
Pełny tekst źródłaMcColl, Stuart J., Peter Rodgers i Valerie Eveloy. "Thermal Management of Solar Photovoltaics Modules for Enhanced Power Generation". W ICREGA’14 - Renewable Energy: Generation and Applications, 479–90. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05708-8_38.
Pełny tekst źródłaToggweiler, P., i R. Minder. "Comparison of Solar Thermal and Photovoltaic Electricity Generation Using Experimental Data from the Iea SSPS Project". W Thermo-Mechanical Solar Power Plants, 275–80. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5402-1_41.
Pełny tekst źródłaGupta, Neeraj, Vivek Kumar, Hrishikesh Dhasmana, Abhishek Verma, Avshish Kumar, Prashant Shukla, Amit Kumar, S. K. Dhawan i Vinod Kumar Jain. "Improving Thermal Comfort in Helmet Using Phase Change Nanocomposite Material". W Advances in Solar Power Generation and Energy Harvesting, 45–52. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3635-9_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Solar thermal power generation"
Lokurlu, Ahmet, Karim Saidi i Christian Gunkel. "Solar Thermal Power Generation". W ISES Solar World Congress 2011. Freiburg, Germany: International Solar Energy Society, 2011. http://dx.doi.org/10.18086/swc.2011.25.19.
Pełny tekst źródłaIslam, M. K., M. Hosenuzzaman, M. M. Rahman, M. Hasanuzzaman i N. A. Rahim. "Thermal performance improvement of solar thermal power generation". W 2013 IEEE Conference on Clean Energy and Technology (CEAT). IEEE, 2013. http://dx.doi.org/10.1109/ceat.2013.6775618.
Pełny tekst źródłaUtamura, Motoaki, Yutaka Tamaura i Hiroshi Hasuike. "Some Alternative Technologies for Solar Thermal Power Generation". W ASME 2006 International Solar Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/isec2006-99123.
Pełny tekst źródłaWeng, Guozhu. "Solar Thermal Power Generation and Its Application". W Advances in Materials, Machinery, Electrical Engineering (AMMEE 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/ammee-17.2017.97.
Pełny tekst źródłaCheng, Xiang. "Review of Solar Thermal Power Generation Technology". W 2017 2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/msmee-17.2017.326.
Pełny tekst źródłaBaskar, S., T. Maridurai, R. Arivazhagan, S. SivaChandran i R. Venkatesh. "Thermal management of solar thermoelectric power generation". W THIRD VIRTUAL INTERNATIONAL CONFERENCE ON MATERIALS, MANUFACTURING AND NANOTECHNOLOGY. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0096456.
Pełny tekst źródłaDer Minassians, Artin, Konrad H. Aschenbach i Seth R. Sanders. "Low-cost distributed solar-thermal-electric power generation". W Optical Science and Technology, SPIE's 48th Annual Meeting, redaktor Roland Winston. SPIE, 2004. http://dx.doi.org/10.1117/12.509785.
Pełny tekst źródłaHoward, Dustin, i Ronald G. Harley. "Modeling of dish-Stirling solar thermal power generation". W Energy Society General Meeting. IEEE, 2010. http://dx.doi.org/10.1109/pes.2010.5590188.
Pełny tekst źródłaLowrie, David, Peter Rodgers, Valerie Eveloy i Abdul Roof Baba. "Enhancement of flat-type solar photovoltaics power generation in harsh environmental conditions". W 2014 30th Semiconductor Thermal Measurement & Management Symposium (SEMI-THERM). IEEE, 2014. http://dx.doi.org/10.1109/semi-therm.2014.6892230.
Pełny tekst źródłaPrice, Suzanne E., i J. Rhett Mayor. "Analysis of Solar-Thermal Power Cycles for Distributed Power Generation". W ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90404.
Pełny tekst źródłaRaporty organizacyjne na temat "Solar thermal power generation"
Neti, Sudhakar, Alparslan Oztekin, John Chen, Kemal Tuzla i Wojciech Misiolek. Novel Thermal Storage Technologies for Concentrating Solar Power Generation. Office of Scientific and Technical Information (OSTI), czerwiec 2013. http://dx.doi.org/10.2172/1159108.
Pełny tekst źródłaReddy, Ramana G. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation. Office of Scientific and Technical Information (OSTI), październik 2013. http://dx.doi.org/10.2172/1111584.
Pełny tekst źródłaHosemann, Peter, Mark Asta, Jan Schroers i Y. Sungtaek Ju. HIGH-OPERATING TEMPERATURE HEAT TRANSFER FLUIDS FOR SOLAR THERMAL POWER GENERATION. Office of Scientific and Technical Information (OSTI), marzec 2020. http://dx.doi.org/10.2172/1670850.
Pełny tekst źródłaMcTigue, Joshua Dominic P., Guangdong Zhu, Craig S. Turchi, Greg Mungas, Nick Kramer, John King i Jose Castro. Hybridizing a Geothermal Plant with Solar and Thermal Energy Storage to Enhance Power Generation. Office of Scientific and Technical Information (OSTI), czerwiec 2018. http://dx.doi.org/10.2172/1452695.
Pełny tekst źródłaQui, Songgang, i Ross Galbraith. Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation. Office of Scientific and Technical Information (OSTI), styczeń 2013. http://dx.doi.org/10.2172/1096171.
Pełny tekst źródłaR. Panneer Selvam, Micah Hale i Matt Strasser. Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation. Office of Scientific and Technical Information (OSTI), marzec 2013. http://dx.doi.org/10.2172/1072014.
Pełny tekst źródłaRobert L. Johnson Jr. i Gary E. Carver. Solar Power Generation Development. Office of Scientific and Technical Information (OSTI), październik 2011. http://dx.doi.org/10.2172/1047740.
Pełny tekst źródłaSkone, Timothy J. Solar Thermal Power Plant, Assembly. Office of Scientific and Technical Information (OSTI), październik 2011. http://dx.doi.org/10.2172/1509033.
Pełny tekst źródłaDrost, M. K., Z. I. Antoniak, D. R. Brown i K. Sathyanarayana. Thermal energy storage for power generation. Office of Scientific and Technical Information (OSTI), październik 1989. http://dx.doi.org/10.2172/5055651.
Pełny tekst źródłaWilliams, T. A., J. A. Dirks, D. R. Brown, Z. I. Antoniak, R. T. Allemann, E. P. Coomes, S. N. Craig, M. K. Drost, K. K. Humphreys i K. K. Nomura. Solar thermal bowl concepts and economic comparisons for electricity generation. Office of Scientific and Technical Information (OSTI), kwiecień 1988. http://dx.doi.org/10.2172/5045636.
Pełny tekst źródła