Gotowa bibliografia na temat „Solar Parabolic Trough Collector”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Solar Parabolic Trough Collector”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Solar Parabolic Trough Collector"
Jassim Jaber, Hazim, Qais A. Rishak i Qahtan A. Abed. "Using PCM, an Experimental Study on Solar Stills Coupled with and without a Parabolic Trough Solar Collector". Basrah journal of engineering science 21, nr 2 (1.06.2021): 45–52. http://dx.doi.org/10.33971/bjes.21.2.7.
Pełny tekst źródłaM. Anil Kumar, K. Sridhar i B. Devika. "Performance of cylindrical parabolic solar collector with the tracking system". Maejo International Journal of Energy and Environmental Communication 3, nr 1 (17.03.2021): 20–24. http://dx.doi.org/10.54279/mijeec.v3i1.245096.
Pełny tekst źródłaMohana, N., K. Karunamurthy i R. Suresh Isravel. "Analysis of outlet temperature of parabolic trough collector solar water heater using machine learning techniques". IOP Conference Series: Earth and Environmental Science 1161, nr 1 (1.04.2023): 012001. http://dx.doi.org/10.1088/1755-1315/1161/1/012001.
Pełny tekst źródłaEck, M., i W. D. Steinmann. "Modelling and Design of Direct Solar Steam Generating Collector Fields". Journal of Solar Energy Engineering 127, nr 3 (20.07.2005): 371–80. http://dx.doi.org/10.1115/1.1849225.
Pełny tekst źródłaPikra, Ghalya, Agus Salim, Andri Joko Purwanto i Zaidan Eddy. "Parabolic Trough Solar Collector Initial Trials". Journal of Mechatronics, Electrical Power, and Vehicular Technology 2, nr 2 (12.03.2012): 57. http://dx.doi.org/10.14203/j.mev.2011.v2.57-64.
Pełny tekst źródłaJyoti, Arun, Dr Prashant Baredar, Dr Hitesh Kumar i Asst Prof Ambuj Kumar. "“Design and Optimization of Solar Absorber Tube Using CFD Analysis”". SMART MOVES JOURNAL IJOSCIENCE 4, nr 3 (12.03.2018): 6. http://dx.doi.org/10.24113/ijoscience.v4i3.127.
Pełny tekst źródłaLüpfert, Eckhard, Klaus Pottler, Steffen Ulmer, Klaus-J. Riffelmann, Andreas Neumann i Björn Schiricke. "Parabolic Trough Optical Performance Analysis Techniques". Journal of Solar Energy Engineering 129, nr 2 (18.06.2006): 147–52. http://dx.doi.org/10.1115/1.2710249.
Pełny tekst źródłaSukanta, Anbu Manimaran, M. Niranjan Sakthivel, Gopalsamy Manoranjith i Loganathan Naveen Kumar. "Performance Enhancement of Solar Parabolic Trough Collector Using Intensified Ray Convergence System". Applied Mechanics and Materials 867 (lipiec 2017): 191–94. http://dx.doi.org/10.4028/www.scientific.net/amm.867.191.
Pełny tekst źródłaZaidan, Maki Haj, Hameed Jasim Khalaf i Ahmed Mohamed Shaker. "Optimum Design of Parabolic Solar Collector with Exergy Analysis". Tikrit Journal of Engineering Sciences 24, nr 4 (1.12.2017): 79–87. http://dx.doi.org/10.25130/tjes.24.4.10.
Pełny tekst źródłaZedan, Maki Haj, Hameed Jasam Khalaf i Ahmed M. Shaker. "Optimum Design of Parabolic Solar Collector with Exergy Analysis". Tikrit Journal of Engineering Sciences 24, nr 4 (1.12.2017): 49–57. http://dx.doi.org/10.25130/tjes.24.4.06.
Pełny tekst źródłaRozprawy doktorskie na temat "Solar Parabolic Trough Collector"
Brooks, Michael John. "Performance of a parabolic trough solar collector". Thesis, Link to the online version, 2005. http://hdl.handle.net/10019/984.
Pełny tekst źródłaHachicha, Ahmed Amine. "Numerical modelling of a parabolic trough solar collector". Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/129729.
Pełny tekst źródłaAlsaady, Mustafa Mohammed H. "Innovative design for ferrofluids based parabolic trough solar collector". Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/48221/.
Pełny tekst źródłaCarrillo, Juan Felipe (Carrillo Salazar). "Mechanical development of an actuation system for a parabolic solar trough collector". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/83687.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (page 26).
This thesis documents my personal contribution to the development of a hydraulic-based actuation system for a solar trough collector. The goal of this project was to design the actuation system using hydraulic actuators for a four meter solar collector prototype in Pittsfield, New Hampshire. After considering several hydraulic system architectures and conducting in-depth analysis into two of them, the idler pulley scheme was chosen. This mechanism uses a double rod end hydraulic actuator connected to wire rope wrapped around a capstan drum and an idler pulley. The model was optimized for mechanical performance, and it is expected to be a more cost effective option than the existing actuation system in New Hampshire once the controls equipment required to actuate the hydraulic cylinders for the new design is specified.
by Juan Felipe Carrillo.
S.B.
Woodrow, Oliver Rhys. "Characterisation of a parabolic trough collector using sheet metal and glass mirror strips". Diss., University of Pretoria, 2017. http://hdl.handle.net/2263/62804.
Pełny tekst źródłaDissertation (MEng)--University of Pretoria, 2017.
Chemical Engineering
MEng
Unrestricted
Figueredo, Stacy L. (Stacy Lee) 1981. "Parabolic trough solar collectors : design for increasing efficiency". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68524.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 193-200).
Parabolic trough collectors are a low cost implementation of concentrated solar power technology that focuses incident sunlight onto a tube filled with a heat transfer fluid. The efficiency and cost of the parabolic trough collector designs is influenced by structural stiffness, choice of materials, assembly tolerances, mirror cleanliness and wear. Current performance estimates of solar trough optical field efficiencies are 54.2% [1]. The goal of this research is to identify general methods and specific design concepts for achieving increased collector efficiency. This thesis has investigated improvements in the design of a parabolic trough module by looking first at the overall structural concept of the collector to reduce complexity while maintaining structural stability under wind loading conditions. In the process of evaluating the feasibility of one such concept, a monolithic reflector panel with a mirror film front surface, details related to the mirror surface efficiency were investigated. At the panel-structure to mirror interface, surface roughness of the underlying structural backing was studied to understand performance effects on the mirror film surface that would make one backing material potentially more suitable than another would. In this case it was found that three materials tested: gel-coated fiberglass, rolled aluminum, and rolled steel were all similarly effective when compared to a more expensive mirrored aluminum backing material. When looking at the integration of the larger structural changes with the factors that affect surface reflectivity of parabolic mirrors, it became apparent that contamination of the surfaces and cleaning were major factors in reduced module effectiveness. Given that the conceptual development of the structure is ongoing, research into contamination factors and potential cleaning solutions were considered in such a way that panel cleaning solutions could be integrated into the trough module design from the start. A vortex generator cleaning concept, which uses V-shaped extruded forms to create vortices over a mirror panel in the presence of flow over the surface, was tested as a passive cleaning solution.
by Stacy L. Figueredo.
Ph.D.
Sotte, Marco. "Design, test and mathematical modeling of parabolic trough solar collectors". Doctoral thesis, Università Politecnica delle Marche, 2012. http://hdl.handle.net/11566/242075.
Pełny tekst źródłaSolar radiation at its origin is a high-exergy energy source: the Sun has an irradiance of about 63 MW/m2. But on the Earth’s surface solar energy flow dramatically decreases. For this reason, when high temperatures or high-exergy need to be reestablished, concentrated solar systems are adopted. Among all possible geometries, parabolic trough collectors are by far the most widespread technology. A field of usage of PTCs is in industrial process heat: this application has a dramatic potential and can be adopted at latitudes like those of central and southern europe. In this thesis the results of research project (PTC.project) for the study of PTCs in IPH and other heat demands in the temperature range from 80 to 250 °C are exposed. The design and manufacture of two prototypes are described in detail, giving complete information on geometrical characteristics, materials and manufacturing processes. Then the results of preliminary tests on the mentioned prototypes are produced, together with the characteristics of a test bench designed to determine PTCs performances with water and heat transfer oil as working fluids in a temperature range from 10 to 150 °C. Then a mathematical model, able to determine the performance of any PTC is described: the model accounts for optical and thermal losses of the collector, and also contains a routine code to calculate the solar position. In the end a simulation environment for annual analysis of the performance of a PTC applied to a specific process heat demand load is presented and the results obtained on a realistic heat demand yearly profile are described. The energetic results suggest that there could be space for this technology in the variety of renewable energies that will be needed to meet international goals in terms of energy and environment in the nearest future. But the experience acquired also suggests that investments are needed if an acceleration on the spreading of PTCs and other CSP technologies is to be realized
Nyberg, Fanny. "Evaluation of Convection Suppressor for Concentrating Solar Collectors with a Parabolic Trough". Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-148543.
Pełny tekst źródłaAbsolicon Solar Collector AB I Härnösand, Sverige, utvecklar koncentrerande solfångare med ett paraboliskt tråg. I solfångarens tråg uppstår termiska förluster som en följd av konvektion. En konvektionsreducerare tillverkades och användes som metod för att minska de termiska förlusterna i tråget. Målet med projektet var att testa och utvärdera konvektionsreduceraren för koncentrerande solfångare med ett paraboliskt tråg samt dess inverkan på verkningsgraden i två olika positioner för tråget, horisontell och lutande. För att kunna mäta konvektionsreducerarens inverkan på solfångaren mättes först solfångarens prestanda utan konvektionsreduceraren i de två olika positionerna, detta resultat användes som referens efter validering. Valideringen gjordes genom att resultatet jämfördes sedan med två andra prestandamätningar (quasi-dynamical test) av solfångaren gjorda av två olika institut, Research Institute of Sweden och SPF Institut für Solartechnik (Schweiz). Därefter, när konvektionsreduceraren var tillverkat och testad i de olika positionerna på samma sätt som mätningarna utan konvektionsreducerare, jämfördes resultaten med och utan konvektionsreducerareet samt att en utvärdering gjordes av dess inverkan. Resultatet visade en signifikant förbättring av solfångarens prestanda i form av minskade termiska förluster när konvektionsreduceraren användes och därav ökad verkningsgrad.
Nation, Deju Denton. "A conceptual electrical energy storage (EES) receiver for solar parabolic trough collector (PTC) power plants". Thesis, University of Leeds, 2013. http://etheses.whiterose.ac.uk/5331/.
Pełny tekst źródłaPaetzold, Joachim Meinert. "A Wind Engineering Analysis of Parabolic Trough Concentrating Solar Power". Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/15256.
Pełny tekst źródłaKsiążki na temat "Solar Parabolic Trough Collector"
Mohammed, Hussein A., Hari B. Vuthaluru i Shaomin Liu. Parabolic Trough Solar Collectors. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-08701-1.
Pełny tekst źródłaStynes, J. Kathleen. Slope error measurement tool for solar parabolic trough collectors: Preprint. [Golden, Colo.]: National Renewable Energy Laboratory, 2012.
Znajdź pełny tekst źródłaForristall, R. Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in Engineering Equation Solver. Golden, Colo: National Renewable Energy Laboratory, 2003.
Znajdź pełny tekst źródłaHeath, Garvin. LCA of parabolic trough CSP: Materials inventory and embodied GHG emissions from two-tank indirect and thermocline thermal storage. Golden, CO: National Renewable Energy Laboratory, 2009.
Znajdź pełny tekst źródłaGawlik, Keith. SkyFuel parabolic trough optical efficiency testing. Golden, Colo.]: National Renewable Energy Laboratory, 2010.
Znajdź pełny tekst źródłaTurchi, Craig S. Gas turbine/solar parabolic trough hybrid designs: Preprint. Golden, CO]: National Renewable Energy Laboratory, 2011.
Znajdź pełny tekst źródłaCoccia, Gianluca, Giovanni Di Nicola i Alejandro Hidalgo. Parabolic Trough Collector Prototypes for Low-Temperature Process Heat. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27084-5.
Pełny tekst źródłaNational Renewable Energy Laboratory (U.S.), red. Line-focus solar power plant cost reduction plan. Golden, Colo: National Renewable Energy Laboratory, 2010.
Znajdź pełny tekst źródłaMehos, Mark S. Acceptance performance test guideline for utility scale parabolic trough and other CSP solar thermal systems: Preprint. Golden, CO: National Renewable Energy Laboratory, 2011.
Znajdź pełny tekst źródłaHeath, Garvin A. Life cycle assessment of a parabolic trough concentrating solar power plant and impacts of key design alternatives: Preprint. Golden, CO: National Renewable Energy Laboratory, 2011.
Znajdź pełny tekst źródłaCzęści książek na temat "Solar Parabolic Trough Collector"
Mohammed, Hussein A., Hari B. Vuthaluru i Shaomin Liu. "Parabolic Trough Collector (PTC)". W Parabolic Trough Solar Collectors, 15–36. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08701-1_2.
Pełny tekst źródłaMohammed, Hussein A., Hari B. Vuthaluru i Shaomin Liu. "PTC Enhancement Using Passive Techniques". W Parabolic Trough Solar Collectors, 37–120. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08701-1_3.
Pełny tekst źródłaMohammed, Hussein A., Hari B. Vuthaluru i Shaomin Liu. "Background". W Parabolic Trough Solar Collectors, 1–13. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08701-1_1.
Pełny tekst źródłaMohammed, Hussein A., Hari B. Vuthaluru i Shaomin Liu. "Discussion on Heat Transfer Enhancement Methods". W Parabolic Trough Solar Collectors, 171–82. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08701-1_5.
Pełny tekst źródłaMohammed, Hussein A., Hari B. Vuthaluru i Shaomin Liu. "Conclusions and Recommendations". W Parabolic Trough Solar Collectors, 183–86. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08701-1_6.
Pełny tekst źródłaMohammed, Hussein A., Hari B. Vuthaluru i Shaomin Liu. "PTC Enhancement Using Nanofluids". W Parabolic Trough Solar Collectors, 121–69. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08701-1_4.
Pełny tekst źródłaJie, Ji, Han Chongwei, He Wei i Pei Gang. "Dynamic Performance of Parabolic Trough Solar Collector". W Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 750–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75997-3_141.
Pełny tekst źródłaGoel, Anubhav, Om Prakash Verma i Gaurav Manik. "Analytical Modeling of Parabolic Trough Solar Collector". W Soft Computing: Theories and Applications, 367–78. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0707-4_34.
Pełny tekst źródłaMalan, Anish, i K. Ravi Kumar. "Optical Modeling of Parabolic Trough Solar Collector". W Proceedings of the 7th International Conference on Advances in Energy Research, 81–89. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5955-6_8.
Pełny tekst źródłaGunay, Ceyda, Anil Erdogan i C. Ozgur Colpan. "Exergetic Optimization of a Parabolic Trough Solar Collector". W The Role of Exergy in Energy and the Environment, 677–89. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89845-2_48.
Pełny tekst źródłaStreszczenia konferencji na temat "Solar Parabolic Trough Collector"
Lu¨pfert, Eckhard, Klaus Pottler, Steffen Ulmer, Klaus-J. Riffelmann, Andreas Neumann i Bjo¨rn Schiricke. "Parabolic Trough Analysis and Enhancement Techniques". W ASME 2005 International Solar Energy Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/isec2005-76023.
Pełny tekst źródłaHurt, Rick, Wooson Yim, Robert Boehm, Mary Jane Hale i Randy Gee. "Advanced Parabolic Trough Field Testing: Real-Time Data Collection, Archiving, and Analysis for the Solargenix Advanced Parabolic Trough". W ASME 2006 International Solar Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/isec2006-99078.
Pełny tekst źródłaBharti, Alka, i Bireswar Paul. "Design of solar parabolic trough collector". W 2017 International Conference on Advances in Mechanical, Industrial, Automation and Management Systems (AMIAMS). IEEE, 2017. http://dx.doi.org/10.1109/amiams.2017.8069229.
Pełny tekst źródłaFarr, Adrian, i Randy Gee. "The SkyTrough™ Parabolic Trough Solar Collector". W ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90090.
Pełny tekst źródłaGee, Randy, Gilbert Cohen i Roland Winston. "A Nonimaging Receiver for Parabolic Trough Concentrating Collectors". W ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1062.
Pełny tekst źródłaDanylyuk, Andriy, Marcus Zettl i Mark Lynass. "Simulation of point light concentration with parabolic trough collector". W SPIE Solar Energy + Technology, redaktorzy Lori E. Greene i Raed A. Sherif. SPIE, 2010. http://dx.doi.org/10.1117/12.861268.
Pełny tekst źródłaKrüger, Dirk, Sebastian Penkert, Jürgen Schnell, Nicole Janotte, Patrick Forman, Peter Mark, Tobias Stanecker i in. "Development of a concrete parabolic trough collector". W SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5117626.
Pełny tekst źródłaZaversky, F., S. Bergmann i W. Sanz. "Detailed Modeling of Parabolic Trough Collectors for the Part Load Simulation of Solar Thermal Power Plants". W ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68032.
Pełny tekst źródłaQu, Ming, David H. Archer i Hongxi Yin. "A Linear Parabolic Trough Solar Collector Performance Model". W ASME 2007 Energy Sustainability Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/es2007-36052.
Pełny tekst źródłaHernandez, Kristian, Ryan King, Joseph Lauth, Joshua Sharp, Eric Wittman i Christopher Depcik. "Shape Comparison for Solar Thermal Parabolic Collector". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88475.
Pełny tekst źródłaRaporty organizacyjne na temat "Solar Parabolic Trough Collector"
Dudley, V., L. Evans i C. Matthews. Test results, Industrial Solar Technology parabolic trough solar collector. Office of Scientific and Technical Information (OSTI), listopad 1995. http://dx.doi.org/10.2172/211613.
Pełny tekst źródłaHosoya, N., J. A. Peterka, R. C. Gee i D. Kearney. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003. Office of Scientific and Technical Information (OSTI), maj 2008. http://dx.doi.org/10.2172/929597.
Pełny tekst źródłaStettenheim, Joel. Second Generation Novel High Temperature Commercial Receiver & Low Cost High Performance Mirror Collector for Parabolic Solar Trough. Office of Scientific and Technical Information (OSTI), luty 2016. http://dx.doi.org/10.2172/1332248.
Pełny tekst źródłaAuthor, Not Given. Solar parabolic trough. Office of Scientific and Technical Information (OSTI), styczeń 2009. http://dx.doi.org/10.2172/1216669.
Pełny tekst źródłaAnthony Messina, Anthony Messina. The Parabolic Solar Trough. Experiment, wrzesień 2012. http://dx.doi.org/10.18258/0050.
Pełny tekst źródłaGleckman, Philip, i Nicolas R. Peralta. Development of a Green Parabolic Trough Collector. Office of Scientific and Technical Information (OSTI), październik 2018. http://dx.doi.org/10.2172/1489170.
Pełny tekst źródłaKinoshita, G. Shenandoah parabolic dish solar collector. Office of Scientific and Technical Information (OSTI), styczeń 1985. http://dx.doi.org/10.2172/5914387.
Pełny tekst źródłaKurup, Parthiv, i Craig S. Turchi. Parabolic Trough Collector Cost Update for the System Advisor Model (SAM). Office of Scientific and Technical Information (OSTI), listopad 2015. http://dx.doi.org/10.2172/1227713.
Pełny tekst źródłaPrice, H. W. Guidelines for reporting parabolic trough solar electric system performance. Office of Scientific and Technical Information (OSTI), czerwiec 1997. http://dx.doi.org/10.2172/549668.
Pełny tekst źródłaAuthor, Not Given. Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts. Office of Scientific and Technical Information (OSTI), październik 2003. http://dx.doi.org/10.2172/15005520.
Pełny tekst źródła