Gotowa bibliografia na temat „SOLAR INTEGRATED”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „SOLAR INTEGRATED”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "SOLAR INTEGRATED"
Calise, Francesco, Massimo Dentice d’Accadia i Maria Vicidomini. "Integrated Solar Thermal Systems". Energies 15, nr 10 (23.05.2022): 3831. http://dx.doi.org/10.3390/en15103831.
Pełny tekst źródłaFrid, S. E., A. V. Mordynskii i A. V. Arsatov. "Integrated solar water heaters". Thermal Engineering 59, nr 11 (11.10.2012): 874–80. http://dx.doi.org/10.1134/s0040601512110067.
Pełny tekst źródłaKrauter, Stefan, i Fabian Ochs. "Integrated solar home system". Renewable Energy 29, nr 2 (luty 2004): 153–64. http://dx.doi.org/10.1016/s0960-1481(03)00190-3.
Pełny tekst źródłaVaccaro, S., P. Torres, J. R. Mosig, A. Shah, J. F. Zürcher, A. K. Skrivervik, F. Gardiol, P. de Maagt i L. Gerlach. "Integrated solar panel antennas". Electronics Letters 36, nr 5 (2000): 390. http://dx.doi.org/10.1049/el:20000350.
Pełny tekst źródłaChiang, Che-Ming, Chia-Yen Lee, Wen-Jen Hwang i Po-Cheng Chou. "Solar Orientation Measurement Systems with Integrated Solar Cells". Open Construction and Building Technology Journal 2, nr 1 (30.10.2008): 280–86. http://dx.doi.org/10.2174/1874836800802010280.
Pełny tekst źródłaChiang, Che-Ming, Chia-Yen Lee i Po-Cheng Chou. "Solar Orientation Measurement Systems with Integrated Solar Cells". Open Construction and Building Technology Journal 3, nr 1 (8.09.2009): 90–95. http://dx.doi.org/10.2174/1874836800903010090.
Pełny tekst źródłaLiu, Xiao Hu, Qiu Yu Chen, Hui Liu, Hui Yu i Fei Yi Bie. "Urban Solar Updraft Tower Integrated with Hi-Rise Building – Case Study of Wuhan New Energy Institute Headquarter". Applied Mechanics and Materials 283 (styczeń 2013): 67–71. http://dx.doi.org/10.4028/www.scientific.net/amm.283.67.
Pełny tekst źródłaKrishnan, B. Pitchia, P. Gopi, M. Mathanbabu i S. Eswaran. "Experimental Investigation of Solar Drier Integrated With HSU for Crops". Journal of Advanced Research in Dynamical and Control Systems 11, nr 12 (31.10.2019): 167–73. http://dx.doi.org/10.5373/jardcs/v11i12/20193351.
Pełny tekst źródłaCorkish, Richard, i Deo Prasad. "Integrated Solar Photovoltaics for Buildings". Journal of Green Building 1, nr 2 (1.05.2006): 63–76. http://dx.doi.org/10.3992/jgb.1.2.63.
Pełny tekst źródłaTagliaferro, Roberto, Desirée Gentilini, Simone Mastroianni, Andrea Zampetti, Alessio Gagliardi, Thomas M. Brown, Andrea Reale i Aldo Di Carlo. "Integrated tandem dye solar cells". RSC Advances 3, nr 43 (2013): 20273. http://dx.doi.org/10.1039/c3ra43380c.
Pełny tekst źródłaRozprawy doktorskie na temat "SOLAR INTEGRATED"
Mahmoudzadeh, Ahmadi Nejad Mohammad Ali. "Integrated solar energy harvesting and storage devices". Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/52899.
Pełny tekst źródłaApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Mahmoud, Mahmoud N. "Integrated Solar Panel Antennas for Cube Satellites". DigitalCommons@USU, 2010. https://digitalcommons.usu.edu/etd/742.
Pełny tekst źródłaEiffert, Patrina. "An economic appraisal of building-integrated photovoltaics". Thesis, Oxford Brookes University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264530.
Pełny tekst źródłaMårtensson, Benny, i Tobias Karlsson. "Cooling integrated solar panels using Phase Changing Materials". Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-16780.
Pełny tekst źródłaI denna exjobbsrapport så har ett antal olika kylningssystem till PV-paneler setts igenom genom en mindre litteraturstudie. Därefter byggdes en kylningsmodul för en BIPV utifrån den kunskapen som samlats in. Kylningsmodulen använde sig utav ett PCM material som var uppdelat mellan 12 påsar som placerades i ett 3x4 mönster som fästs på baksidan av en aluminiumplåt som i sin tur placerades på baksidan utav PV-panelen. Denna testades först i ett pilottest och sedan utomhus på paneler som isoleras baktill för att simulera BIPV-paneler. Temperaturdata samlades in från panelens baksida, med och utan kylnings modul, som sedan jämfördes med varandra samt omgivningens temperatur. Slutsatsen är att PCM kyler panelen under liknande väderförhållanden där ute temperaturen och molnigheten var ungefär densamma, men att PCM behöver optimeras mer i form av användningen av materialet, mängden av material, och hur det sätts upp som kylning på PV-paneler. En ekonomisk kalkyl genomfördes som visar att det inte är ekonomiskt gångbart eftersom det tar 14 för PV-panelen med kylning att betala av sig själv medan det tar 13 år för PV-panelen utan kylning att göra det. Dessa resultat diskuteras sedan i jämförelse med andra system och tidigare arbeten som gjorts inom området.
Pelegrini, Alexandre Viera. "Refractive integrated nonimaging solar collectors design and analysis of a novel solar-daylighting-technology". Thesis, Brunel University, 2009. http://bura.brunel.ac.uk/handle/2438/4281.
Pełny tekst źródłaGiovanardi, Alessia. "Integrated solar thermal facade component for building energy retrofit". Doctoral thesis, University of Trento, 2012. http://eprints-phd.biblio.unitn.it/782/1/AlessiaGiovanardi_DepositoLegale_TesiPhD.pdf.
Pełny tekst źródłaSchylander, Anna. "Building-Integrated Photovoltaics for a Habitat on Mars : A Design Proposal Based on the Optimal Location and Placement of Integrated Solar Cells". Thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-72753.
Pełny tekst źródłaMarín, Sáez Julia. "Design, Construction and Characterization of Holographic Optical Elements for Building-Integrated Concentrating Photovoltaics". Doctoral thesis, Universitat de Lleida, 2019. http://hdl.handle.net/10803/669230.
Pełny tekst źródłaEl principal objetivo de esta tesis es el diseño, construcción y caracterización de un sistema de concentración solar formado por dos lentes cilíndricas holográficas y una célula fotovoltaica de Silicio para integración arquitectónica en fachada. El uso de Elementos Ópticos Holográficos (EOHs) en lugar de elementos refractivos o espejos supone ventajas como la selectividad cromática y la facilidad de integración en fachada. Por otro lado, es necesario realizar seguimiento en una dirección. Los EOHs han sido diseñados de forma que se acopla el espectro solar con la respuesta espectral de la célula para obtener una concentración óptica máxima en el rango espectral deseado y por lo tanto, corriente eléctrica máxima. Se ha desarrollado un algoritmo de trazado de rayos basado en la Teoría de Ondas Acopladas para analizar local y globalmente EOHs y sistemas holográficos. Las simulaciones han sido validadas con resultados experimentales de EOHs registrados en fotopolímero Bayfol HX. También se han estudiado EOHs que operan en el régimen de transición entre el régimen de Bragg y el de Raman-Nath, observándose las ventajas que ofrece para aplicaciones de iluminación con espectro ancho.
The main objective of this thesis is the design, construction and characterization of a solar concentrating system formed by two cylindrical holographic lenses and a Silicon PV cell for the scope of façade building integration. The use of Holographic Optical Elements (HOEs) instead of refractive or reflective elements implies advantages such as chromatic selectivity and ease of integration on a façade. On the other hand, tracking is necessary in one direction. The HOEs have been designed to couple the solar spectrum with the spectral response of the PV cell in order to provide maximal optical concentration on the target spectral range and therefore maximal electrical current. A ray-tracing algorithm based on Coupled Wave Theory has been developed to locally and globally analyze HOEs and holographic systems. Simulations have been validated with experimental results of HOEs recorded on Bayfol HX photopolymer. HOEs operating in the transition regime between the Bragg regime and Raman-Nath regime have also been studied, showing the promising advantages it offers for broadband spectrum illumination applications.
Dinkel, Thomas [Verfasser]. "Integrated Effciency Engineering in Solar Cell Mass Production / Thomas Dinkel". Bremen : IRC-Library, Information Resource Center der Jacobs University Bremen, 2010. http://d-nb.info/1035033437/34.
Pełny tekst źródłaAssembe, Cedric Obiang. "Integrated solar photovoltaic and thermal system for enhanced energy efficiency". Thesis, Cape Peninsula University of Technology, 2016. http://hdl.handle.net/20.500.11838/2387.
Pełny tekst źródłaSouth Africa has raised concerns regarding the development of renewable energy sources such as wind, hydro and solar energy. Integration of a combined photovoltaic and thermal system was considered to transform simultaneous energy into electricity and heat. This was done to challenge the low energy efficiency observed when the two solar energy conversion technologies are employed separately, in order to gain higher overall energy efficiency and ensure better utilization of the solar energy. Therefore, the notion of using a combined photovoltaic and thermal system was to optimize and to improve the overall PV panel efficiency by adding conversion to thermal energy for residential and commercial needs of hot water or space heating or space cooling using appropriate technology. The PV/T model constructed using water as fluid like the one used for the experimental work, presented a marginal increase in electrical efficiency but a considerable yield on the overall PV/T efficiency, because of the simultaneous operation by coupling a PV module with a thermal collectors.
Książki na temat "SOLAR INTEGRATED"
Sharp, Ian D., Harry A. Atwater i Hans-Joachim Lewerenz, red. Integrated Solar Fuel Generators. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788010313.
Pełny tekst źródłaHenry, Tom. The solar photovoltaic workbook. [U.S.?]: Henry Publications, 2009.
Znajdź pełny tekst źródłaMandalaki, Maria, i Theocharis Tsoutsos. Solar Shading Systems: Design, Performance, and Integrated Photovoltaics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-11617-0.
Pełny tekst źródłaKaminar, Neil. Solar basics: The easy guide to solar energy. Wilkesboro, NC: McNeill Hill Publications, 2009.
Znajdź pełny tekst źródłaKaminar, Neil. Solar basics: The easy guide to solar energy. Wilkesboro, NC: McNeill Hill Publications, 2009.
Znajdź pełny tekst źródłaArchitects, Kiss Cathcart Anders, i National Renewable Energy Laboratory (U.S.), red. Building-integrated photovoltaics: Final report. Golden, Colo: National Renewable Energy Laboratory, 1993.
Znajdź pełny tekst źródłaDo it yourself 12 volt solar power. Wyd. 2. East Meon: Permanent Publications, 2011.
Znajdź pełny tekst źródłaDaniek, Michel. Do it yourself 12 volt solar power. East Meon, Hampshire: Permanent Publications, 2007.
Znajdź pełny tekst źródłaNational Research Council (U.S.). Solar System Exploration Survey. New frontiers in the solar system: An integrated exploration strategy. Washington, D.C: National Academies Press, 2003.
Znajdź pełny tekst źródłaF, Steege John, Metzger Deborah A i Levy Barbara S, red. Chronic pelvic pain: An integrated approach. Philadelphia: Saunders, 1998.
Znajdź pełny tekst źródłaCzęści książek na temat "SOLAR INTEGRATED"
Ritzen, Michiel, Zeger Vroon i Chris Geurts. "Building Integrated Photovoltaics". W Photovoltaic Solar Energy, 579–89. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118927496.ch51.
Pełny tekst źródłaReinders, Angèle, i Georgia Apostolou. "Product Integrated Photovoltaics". W Photovoltaic Solar Energy, 590–600. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118927496.ch52.
Pełny tekst źródłaGoel, Malti, V. S. Verma i Neha Goel Tripathi. "Building-Integrated Photo-Voltaic Systems". W Solar Energy, 131–47. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2099-8_11.
Pełny tekst źródłaGhasemzadeh, Kamran, Angelo Basile i Abbas Aghaeinejad-Meybodi. "Solar Membrane Reactor". W Integrated Membrane Systems and Processes, 307–41. Oxford, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118739167.ch12.
Pełny tekst źródłaCamacho, Eduardo F., Manuel Berenguel, Francisco R. Rubio i Diego Martínez. "Integrated Control of Solar Systems". W Control of Solar Energy Systems, 369–85. London: Springer London, 2012. http://dx.doi.org/10.1007/978-0-85729-916-1_8.
Pełny tekst źródłaKalogirou, Soteris A. "Building-Integrated Solar Thermal Systems". W Renewable Energy in the Service of Mankind Vol II, 713–21. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18215-5_64.
Pełny tekst źródłaNathanson, Alex. "Product Integrated Photovoltaics". W A History of Solar Power Art and Design, 188–98. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003030683-9.
Pełny tekst źródłaNathanson, Alex. "Building Integrated Photovoltaics". W A History of Solar Power Art and Design, 137–55. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003030683-7.
Pełny tekst źródłaAhuja, Anil. "Integration of Solar Power and Building Systems". W Integrated M/E Design, 83–88. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-5514-5_5.
Pełny tekst źródłaComsit, Mihai, Ion Visa, Macedon Dumitru Moldovan i Luminita Isac. "Architecturally Integrated Multifunctional Solar-Thermal Façades". W Springer Proceedings in Energy, 47–65. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09707-7_4.
Pełny tekst źródłaStreszczenia konferencji na temat "SOLAR INTEGRATED"
Davis, Mark W., A. Hunter Fanney i Brian P. Dougherty. "Measured Versus Predicted Performance of Building Integrated Photovoltaics". W ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1050.
Pełny tekst źródłaFanney, A. Hunter, Mark W. Davis i Brian P. Dougherty. "Short-Term Characterization of Building Integrated Photovoltaic Panels". W ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1055.
Pełny tekst źródłaFanney, A. Hunter, Brian P. Dougherty i Mark W. Davis. "Measured Performance of Building Integrated Photovoltaic Panels". W ASME 2001 Solar Engineering: International Solar Energy Conference (FORUM 2001: Solar Energy — The Power to Choose). American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/sed2001-138.
Pełny tekst źródłaDavis, Mark W., A. Hunter Fanney i Brian P. Dougherty. "Prediction of Building Integrated Photovoltaic Cell Temperatures". W ASME 2001 Solar Engineering: International Solar Energy Conference (FORUM 2001: Solar Energy — The Power to Choose). American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/sed2001-140.
Pełny tekst źródłaMcDonald, Mark, i Chris Barnes. "Spectral optimization of CPV for integrated energy output". W Solar Energy + Applications, redaktor Benjamin K. Tsai. SPIE, 2008. http://dx.doi.org/10.1117/12.793447.
Pełny tekst źródłaShen, Guozhen. "Flexible Energy Unit Integrated Photodetecting Systems". W Optics for Solar Energy. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/ose.2015.rtu4c.1.
Pełny tekst źródłaWalker, Andy, Norm Weaver, Gregory Kiss, Doug Balcomb i Melinda Becker-Humphry. "Analyzing Two Federal Building Integrated Photovoltaics Projects Using ENERGY-10 Simulations". W ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1046.
Pełny tekst źródłaKelly, Bruce, Ulf Herrmann i Mary Jane Hale. "Optimization Studies for Integrated Solar Combined Cycle Systems". W ASME 2001 Solar Engineering: International Solar Energy Conference (FORUM 2001: Solar Energy — The Power to Choose). American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/sed2001-150.
Pełny tekst źródłaVedraine, S., Ph Torchio, H. Derbal-Habak, F. Flory, V. Brissonneau, D. Duché, J. J. Simon i L. Escoubas. "Plasmonic structures integrated in organic solar cells". W SPIE Solar Energy + Technology, redaktor Loucas Tsakalakos. SPIE, 2010. http://dx.doi.org/10.1117/12.859898.
Pełny tekst źródłaMcClintock, Ryan, Kathryn Minder, Alireza Yasan, Can Bayram, Frank Fuchs, Patrick Kung i Manijeh Razeghi. "Solar-blind avalanche photodiodes". W Integrated Optoelectronic Devices 2006, redaktorzy Manijeh Razeghi i Gail J. Brown. SPIE, 2006. http://dx.doi.org/10.1117/12.660147.
Pełny tekst źródłaRaporty organizacyjne na temat "SOLAR INTEGRATED"
Gurung, Niroj, Muhidin Lelic, Will Nation, Esa Paaso, Roshan Sharma, Aleksandar Vukojevic i Honghao Zheng. Microgrid-Integrated Solar-Storage Technology (MISST). Office of Scientific and Technical Information (OSTI), marzec 2022. http://dx.doi.org/10.2172/1861080.
Pełny tekst źródłaRozenman, T. Integrated solar reforming for thermochemical energy transport. Office of Scientific and Technical Information (OSTI), grudzień 1987. http://dx.doi.org/10.2172/5266330.
Pełny tekst źródłaZheng, R. Feng, i Robert S. Wegeng. Integrated Solar Thermochemical Reaction System (Final Report). Office of Scientific and Technical Information (OSTI), kwiecień 2019. http://dx.doi.org/10.2172/1514768.
Pełny tekst źródłaPartyka, Eric, i Anil Shenoy. High Efficiency Solar Integrated Roof Membrane Product. Office of Scientific and Technical Information (OSTI), maj 2013. http://dx.doi.org/10.2172/1074447.
Pełny tekst źródłaStiebitz, Paul. Hyperspectral Polymer Solar Cells, Integrated Power for Microsystems. Office of Scientific and Technical Information (OSTI), maj 2014. http://dx.doi.org/10.2172/1167104.
Pełny tekst źródłaTan, Jin, Andy Hoke, Haoyu Yuan, Bin Wang, Rick Kenyon, Xin Fang, Przemyslaw Koralewicz i in. Final Technical Report: Multi-Timescale Integrated Dynamics and Scheduling for Solar (MIDAS-Solar). Office of Scientific and Technical Information (OSTI), kwiecień 2023. http://dx.doi.org/10.2172/1972321.
Pełny tekst źródłaFedrizzi, Roberto, i Paolo Bonato. Building Integrated Solar Envelope Systems for HVAC and Lighting. IEA SHC Task 56, czerwiec 2020. http://dx.doi.org/10.18777/ieashc-task56-2020-0008.
Pełny tekst źródłanone,. Research and Development Needs for Building-Integrated Solar Technologies. Office of Scientific and Technical Information (OSTI), styczeń 2014. http://dx.doi.org/10.2172/1220819.
Pełny tekst źródłaSmith, Randall. MUNI Ways and Structures Building Integrated Solar Membrane Project. Office of Scientific and Technical Information (OSTI), lipiec 2014. http://dx.doi.org/10.2172/1196291.
Pełny tekst źródłaDoyle, J., P. Bos i J. Weingart. Solar thermal central receiver integrated commercialization analysis. Executive summary. Office of Scientific and Technical Information (OSTI), marzec 1986. http://dx.doi.org/10.2172/5829892.
Pełny tekst źródła