Gotowa bibliografia na temat „SOLAR FLAT PLATE COLLECTORS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „SOLAR FLAT PLATE COLLECTORS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "SOLAR FLAT PLATE COLLECTORS"
Noghrehabadi, Aminreza, Ebrahim Hajidavaloo, Mojtaba Moravej i Ali Esmailinasab. "An experimental study of the thermal performance of the square and rhombic solar collectors". Thermal Science 22, nr 1 Part B (2018): 487–94. http://dx.doi.org/10.2298/tsci151228252n.
Pełny tekst źródłaHan, Xiao Dong, Shi Wei Zhang, Chuan Chen i Yong Tang. "Analysis of Selective Absorber Coatings on Thermal Performance of the Solar Flat-Plate Collector". Advanced Materials Research 690-693 (maj 2013): 2093–97. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.2093.
Pełny tekst źródłaAmirgaliyev, Yedilkhan, Murat Kunelbayev, Talgat Ormanov, Talgat Sundetov i Salauat Daulbayev. "Experimental comparative analysis of operating characteristics of double circuit flat-plate solar collector with thermosiphon circulation and flat solar collector with chemical coating". Thermal Science, nr 00 (2021): 173. http://dx.doi.org/10.2298/tsci201108173a.
Pełny tekst źródłaOlczak, Piotr, Dominika Matuszewska i Jadwiga Zabagło. "The Comparison of Solar Energy Gaining Effectiveness between Flat Plate Collectors and Evacuated Tube Collectors with Heat Pipe: Case Study". Energies 13, nr 7 (10.04.2020): 1829. http://dx.doi.org/10.3390/en13071829.
Pełny tekst źródłaMarcic, Simon, Rebeka Kovacic-Lukman i Peter Virtic. "Hybrid system solar collectors - heat pumps for domestic water heating". Thermal Science 23, nr 6 Part A (2019): 3675–85. http://dx.doi.org/10.2298/tsci180314187m.
Pełny tekst źródłaSharma, Chandrakant, i Dr Virendra Sangtani. "Analyses of a Flat Plate Photovoltaic and Thermal Solar Collectors". International Journal of Trend in Scientific Research and Development Volume-3, Issue-3 (30.04.2019): 239–42. http://dx.doi.org/10.31142/ijtsrd21707.
Pełny tekst źródłaLi, Jie. "Review of Materials for Solar Thermal Collectors". Advanced Materials Research 171-172 (grudzień 2010): 486–89. http://dx.doi.org/10.4028/www.scientific.net/amr.171-172.486.
Pełny tekst źródłaKousar, Rubeena, i Muzaffar Ali. "Annual transient simulations and experimental investigation of a hybrid flat plate and evacuated tube collectors array in subtropical climate". Thermal Science 24, nr 2 Part B (2020): 1435–43. http://dx.doi.org/10.2298/tsci190623421k.
Pełny tekst źródłaOyinlola, MA, i GSF Shire. "Characterising micro-channel absorber plates for building integrated solar thermal collectors". Building Services Engineering Research and Technology 40, nr 1 (12.06.2018): 13–29. http://dx.doi.org/10.1177/0143624418783173.
Pełny tekst źródłaHe, Yong Tai, Rui Ming Liu i Jin Hao Liu. "Experimental Research of Photovoltaic/Thermal (PV/T) Solar Systems". Applied Mechanics and Materials 401-403 (wrzesień 2013): 146–50. http://dx.doi.org/10.4028/www.scientific.net/amm.401-403.146.
Pełny tekst źródłaRozprawy doktorskie na temat "SOLAR FLAT PLATE COLLECTORS"
Vestlund, Johan. "Gas-filled, flat plate solar collectors". Doctoral thesis, Högskolan Dalarna, Energi och miljöteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:du-6182.
Pełny tekst źródłaReiter, Christoph Nikolaus. "Polymeric solar-thermal flat-plate collectors". Thesis, De Montfort University, 2014. http://hdl.handle.net/2086/10755.
Pełny tekst źródłaSicner, Karen Maffitt. "A method for sizing flat plate solar collectors for space and hot water heating". Thesis, Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/21750.
Pełny tekst źródłaEhrmann, Nicole [Verfasser]. "Development of selective coating systems for solar-thermal flat-plate collectors / Nicole Ehrmann". Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2012. http://d-nb.info/1025758293/34.
Pełny tekst źródłaNalis, Amrizal. "Quasi-Dynamic Characterization of Hybrid Photovoltaic/Thermal (PV/T) Flat-Plate Collectors". Doctoral thesis, Universitat de Lleida, 2012. http://hdl.handle.net/10803/84100.
Pełny tekst źródłaA hybrid photovoltaic/thermal transient model has been developed and validated experimentally. The methodology extends the quasi-dynamic thermal model stated in the EN 12975 to involve the electrical performance and to consider the dynamic behaviour minimising constraints when characterising the collector. A backward moving average filtering procedure has been applied to improve the model response for variable working conditions. Concerning the electrical part, the model includes the thermal and radiation dependences in its variables. The results revealed that the characteristic parameters included in the model reasonably agree with the experimental values obtained from standard steady-state and IV characteristic curve measurements. After a calibration process the proposed model is a suitable tool to predict the thermal and electrical performance of a hybrid solar collector, for a specific weather data set
Se ha desarrollado un modelo dinámico para caracterizar colectores solares híbridos térmofotovoltaicos. La metodología extiende el modelo térmico estipulado en la norma EN 12975 involucrando la aportación eléctrica y estudiando el comportamiento dinámico para minimizar las restricciones a la hora de caracterizar el módulo. Se han implementado procedimientos de filtrado que mejoran la respuesta del modelo bajo condiciones variables. En cuanto a la parte eléctrica, el modelo incluye las dependencias térmicas y la radiación en sus variables. Los resultados obtenidos a partir de caracterización dinámica del colector híbrido PV/T revelaron que los parámetros característicos incluidos en el modelo concuerdan razonablemente bien con los valores experimentales obtenidos siguiendo el estándar de caracterización estacionaria, la capacidad calorífica efectiva y las mediciones de la curva característica IV. Después de un proceso de calibración, el modelo es una herramienta adecuada para predecir el comportamiento de un colector solar híbrido, para unas condiciones externas determinadas.
Sumair, Faisal Ahmed. "Preparation and characterisation of eutectic nanofluids for heat transfer enhancement in flat plate solar collectors". Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/48390/.
Pełny tekst źródłaRodrigues, Felipe Pereira. "Manufacturing process and study of a selective surface for flat plate solar collectors by using granite residue". Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12587.
Pełny tekst źródłaThe using of alternatives materials to replace selective surfaces is a natural trend, because it usually looks for improvements on efficiency of surfaces at the same time that it tries to reduce costs. Composites are already used on obtainment of some selective surfaces, however, if the possibility to use residue that would be discarded was associated to these characteristics, providing an added-value, it would brings some benefits like a possible reduction of manufacturing costs. Thus, this thesis proposes the obtainment and study of selective surfaces for flat plate solar collectors for low cost by using residue from granite industry. Three different surfaces was studied, two of them of obtained on the laboratory, one is granite powder made and the other is a surface composed by a mixture of granite powder and CRFO (Cr0,75Fe1,25O3); the third surface is a commercial one, known as TiNOX. To perform the tests of the surfaces it was built an experimental stand, it allows simulating a solar collector conditions. The tests was performed in a stagnation condition, in other words, there wasnât any water flow inside tubes. Through this experimental apparatus it was possible to test the three surfaces simultaneously. The field tests showed that the highest temperatures were reached by granite powder surface, which reached an average temperature of 119 ÂC, while the granite powder and CRFO mixture surface reached an average of 96 ÂC. The TiNOX achieve an average temperature of 101 ÂC. The three surfaces was compared each other through an equation that gives a global heat loss coefficient. The granite powder surface was the one which achieved the lowest global heat loss coefficient.
O uso de materiais alternativos com objetivo de substituir superfÃcies seletivas à uma tendÃncia natural, pois geralmente se busca melhorias na eficiÃncia das superfÃcies ao mesmo tempo em que se tenta diminuir os custos. SubstÃncias compÃsitas jà sÃo utilizadas na obtenÃÃo de algumas superfÃcies seletivas, no entanto, se for associado a estas caracterÃsticas a possibilidade de utilizar resÃduos que iriam ser descartados, conferindo aos mesmos um valor agregado, isso traria alguns benefÃcios, como uma possÃvel reduÃÃo de custos de fabricaÃÃo. Desta forma, o presente trabalho propÃe a obtenÃÃo e o estudo de superfÃcies seletivas para aplicaÃÃes em coletores solares de placa plana de baixo custo originÃrio do resÃduo da indÃstria de granito. Foram estudadas trÃs diferentes superfÃcies, duas delas foram obtidas no laboratÃrio, a superfÃcie a base de pà de granito e a superfÃcie composta pela mistura de pà de granito e CRFO (Cr0,75Fe1,25O3); e a terceira superfÃcie foi uma superfÃcie comercial, conhecida como TiNOX. Para a realizaÃÃo dos testes foi construÃda uma bancada experimental de madeira, de forma que fosse possÃvel simular as condiÃÃes de um coletor solar de placa plana. Os testes foram feitos em condiÃÃo de estagnaÃÃo, ou seja, nÃo havia fluxo de Ãgua atravÃs de tubos no coletor. AtravÃs desse aparato experimental foi possÃvel testar as trÃs superfÃcies seletivas simultaneamente. Os testes de campo mostraram que a superfÃcie composta por pà de granito foi a que atingiu as maiores temperaturas, com uma mÃdia de atà 119 ÂC, enquanto a superfÃcie obtida com uma mistura de pà de granito e CRFO chegou a temperatura mÃdia de 96 ÂC, jà a superfÃcie comercial atingiu uma mÃdia de 101 ÂC. As superfÃcies foram comparadas atravÃs de uma equaÃÃo que fornece o coeficiente global de perda de energia tÃrmica. Os menores coeficientes foram obtidos pela superfÃcie de pà de granito
Linde, Daniel. "Evaluation of a Flat-Plate Photovoltaic Thermal (PVT) Collector prototype". Thesis, Högskolan Dalarna, Energiteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:du-24061.
Pełny tekst źródłaPerumattil, Jose Rose Mary. "The analysis of flat plate solar collector with double-axis solar tracking". Thesis, Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-38932.
Pełny tekst źródłaCharlesworth, Peter S. "A full-scale and model study of convective heat transfer from roof mounted flat-plate solar collectors". Thesis, University of Sheffield, 1986. http://etheses.whiterose.ac.uk/5993/.
Pełny tekst źródłaKsiążki na temat "SOLAR FLAT PLATE COLLECTORS"
Perers, Bengt. Flat plate collectors with booster mirrors. Stockholm: Swedish Council for Building Research, 1993.
Znajdź pełny tekst źródłaMarion, William. Solar radiation data manual for flat-plate and concentrating collectors. Golden, Colo: National Renewable Energy Laboratory, 1994.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration. i Westinghouse Electric Corporation. Advanced Energy Systems Division., red. Process research of non-CZ silicon material: Quarterly report no. 5, April 1, 1985 - June 30, 1985. [Washington, D.C.?: National Aeronautics and Space Administration, 1985.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration. i Westinghouse Electric Corporation. Advanced Energy Systems Division., red. Process research of non-CZ silicon material: Quarterly report no. 5, April 1, 1985 - June 30, 1985. [Washington, D.C.?: National Aeronautics and Space Administration, 1985.
Znajdź pełny tekst źródłaJet Propulsion Laboratory (U.S.) i Solar Energy Research Institute, red. Flat-plate Solar Array Project. Pasadena, Calif: Jet Propulsion Laboratory, 1988.
Znajdź pełny tekst źródłaRam, Kachare, Moacanin Jovan 1926- i Jet Propulsion Laboratory (U.S.), red. A summary report on the Flat-Plate Solar Array Project Workshop on Transparent Conducting Polymers: January 11 and 12, 1985. Pasadena, Calif: Jet Propulsion Laboratory, California Institute of Technology, 1985.
Znajdź pełny tekst źródłaChristensen, Elmer. Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project of the U.S. Department of Energy's National Photovoltaics Program : 10 years of progress. [Washington, DC?]: U.S. Dept. of Energy, 1988.
Znajdź pełny tekst źródłaInc, Banyan Energy, i National Renewable Energy Laboratory (U.S.), red. A flat ATIR optics approach to CPV: December 3, 2009 - December 3, 2010. Golden, CO: National Renewable Energy Laboratory, 2011.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Excimer laser annealing to fabricate low cost solar cells: Quarterly technical report no. 03 for period covering 1 October to 31 December 1984. Bedford, Mass: Spire Corporation, 1985.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration, red. Flat-Plate Solar Array Project: Progress report 26 for the period July 1985 to April 1986 and proceedings of the 26th Project Integration Meeting. [Washington, DC: National Aeronautics and Space Administration, 1985.
Znajdź pełny tekst źródłaCzęści książek na temat "SOLAR FLAT PLATE COLLECTORS"
Norton, Brian. "Flat-Plate Collectors". W Solar Energy Thermal Technology, 81–115. London: Springer London, 1992. http://dx.doi.org/10.1007/978-1-4471-1742-1_7.
Pełny tekst źródłaGarg, H. P. "Advanced Flat Plate Collectors". W Advances in Solar Energy Technology, 1–123. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-017-0659-9_1.
Pełny tekst źródłaÖzil, E., i K. Yaşar. "Analysis of Flat Plate Collectors". W Solar Energy Utilization, 188–213. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3631-7_9.
Pełny tekst źródłaTiwari, G. N., Arvind Tiwari i Shyam. "Solar Flat-Plate Air Collectors". W Energy Systems in Electrical Engineering, 369–416. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0807-8_9.
Pełny tekst źródłaSarma, Dhrupad, Parimal Bakul Barua, Deva Kanta Rabha, Nidhi Verma, Soumyajyoti Purkayastha i Sudipta Das. "Flat Plate Solar Thermal Collectors—A Review". W Emerging Technologies for Smart Cities, 197–209. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1550-4_21.
Pełny tekst źródłaBadescu, Viorel. "Flat-Plate Solar Collectors. Optimization of Absorber Geometry". W Optimal Control in Thermal Engineering, 317–48. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52968-4_15.
Pełny tekst źródłaSzubel, Mateusz, Mariusz Filipowicz, Karolina Papis-Frączek i Maciej Kryś. "Tutorial 1 – Flat-Plate Solar Collector". W Computational Fluid Dynamics in Renewable Energy Technologies, 77–110. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003202226-9.
Pełny tekst źródłaMetzger, Juliane, Tomas Matuska i Borivoj Sourek. "Solar Combisystems with Building-Integrated Evacuated Flat-Plate Collectors". W Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 388–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75997-3_67.
Pełny tekst źródłaIsac, Luminita, Alexandru Enesca, Ciprian Mihoreanu, Dana Perniu i Anca Duta. "Spectrally Solar Selective Coatings for Colored Flat Plate Solar Thermal Collectors". W Springer Proceedings in Energy, 279–98. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09707-7_21.
Pełny tekst źródłaVestlund, Johan, Jan-Olof Dalenbäck i Mats Rönnelid. "Thermal Losses in Sealed, Gas-Filled Flat Plate Solar Collectors". W Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 651–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75997-3_120.
Pełny tekst źródłaStreszczenia konferencji na temat "SOLAR FLAT PLATE COLLECTORS"
Rao, Singiresu S. "Optimization of Stationary Flat-Plate Solar Collectors". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52082.
Pełny tekst źródłaModrek, Mohamad, i Ali Al-Alili. "Experimental Investigation of a Flat Plate Photovoltaic/Thermal Collector". W ASME 2018 12th International Conference on Energy Sustainability collocated with the ASME 2018 Power Conference and the ASME 2018 Nuclear Forum. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/es2018-7223.
Pełny tekst źródłaZambolin, Enrico, Davide Del Col i Andrea Padovan. "Experimental Daily Energy Performance of Flat Plate and Evacuated Tube Solar Collectors". W ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90344.
Pełny tekst źródłaGonza´lez, Jorge E., i Luis Humberto Alva S. "Solar Air Conditioning Systems With PCM Solar Collectors". W ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1040.
Pełny tekst źródłaMaha, Benhamad, Snoussi Ali i Ben Brahim Ammar. "Thermodynamic optimization of flat plate solar collectors". W 2014 5th International Renewable Energy Congress (IREC). IEEE, 2014. http://dx.doi.org/10.1109/irec.2014.6826985.
Pełny tekst źródłaKulkarni, P. A., S. P. Sabnis i R. Sarangi. "Recent investigations in solar flat plate collectors". W 2015 International Conference on Technologies for Sustainable Development (ICTSD). IEEE, 2015. http://dx.doi.org/10.1109/ictsd.2015.7095913.
Pełny tekst źródłaSaleh, Ahmad M., Donald W. Mueller i Hosni I. Abu-Mulaweh. "Flat-Plate Solar Collector in Transient Operation: Modeling and Measurements". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62377.
Pełny tekst źródłaSharma, Yagnesh N., Manjunath M. Shivamallaiah i Vasudeva K. Karanth. "Three Dimensional CFD Simulation of Thermosyphon Flow in an Unglazed Solar Flat Plate Collector". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64090.
Pełny tekst źródłaTosi, Andrea, Lidia Roca, Juan D. Gil, Antonio Visioli i Manuel Berenguel. "Multivariable controller for stationary flat plate solar collectors*". W 2018 7th International Conference on Systems and Control (ICSC). IEEE, 2018. http://dx.doi.org/10.1109/icosc.2018.8587808.
Pełny tekst źródłaBettayeb, Maamar, Mahmoud Nabag i Muhammad Ali Al-Radhawi. "Reduced order models for flat-plate solar collectors". W 2011 IEEE GCC Conference and Exhibition (GCC). IEEE, 2011. http://dx.doi.org/10.1109/ieeegcc.2011.5752549.
Pełny tekst źródłaRaporty organizacyjne na temat "SOLAR FLAT PLATE COLLECTORS"
Dunlap, M. A., W. Marion i S. Wilcox. Solar radiation data manual for flat-plate and concentrating collectors. Office of Scientific and Technical Information (OSTI), sierpień 1994. http://dx.doi.org/10.2172/10169141.
Pełny tekst źródłaKong, Weiqiang, Simon Furbo i Jianhua Fan. Simulation and design of collector array units within large systems. IEA SHC Task 55, październik 2019. http://dx.doi.org/10.18777/ieashc-task55-2019-0005.
Pełny tekst źródłaFan, Jianhua, Weiqiang Kong i Simon Furbo. Simulation and design of collector array units within large systems. IEA SHC Task 55, październik 2019. http://dx.doi.org/10.18777/ieashc-task55-2019-0006.
Pełny tekst źródłaRockenbaugh, Caleb, Jesse Dean, David Lovullo, Lars Lisell, Greg Barker, Ed Hanckock i Paul Norton. High Performance Flat Plate Solar Thermal Collector Evaluation. Office of Scientific and Technical Information (OSTI), wrzesień 2016. http://dx.doi.org/10.2172/1326887.
Pełny tekst źródłaEmrich, Carol, i Roy Coffman. Evaluation of Transparent Insulation Materials in Flat Plate Collectors. Office of Scientific and Technical Information (OSTI), grudzień 1994. http://dx.doi.org/10.2172/1577037.
Pełny tekst źródłaAdcock, J., i R. Knecht. Flat-plate solar array project: Government and industry responding to national needs. Office of Scientific and Technical Information (OSTI), wrzesień 1988. http://dx.doi.org/10.2172/6675214.
Pełny tekst źródłaReiter, Christoph. IEA-SHC Task 39 INFO Sheet B9 - Thermal loads at components of state-of-the-art flat-plate collectors. IEA Solar Heating and Cooling Programme, maj 2015. http://dx.doi.org/10.18777/ieashc-task39-2015-0030.
Pełny tekst źródła