Gotowa bibliografia na temat „Solar exposure”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Solar exposure”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Solar exposure"
Turnbull, D. J., i P. W. Schouten. "Utilising polyphenylene oxide for high exposure solar UVA dosimetry". Atmospheric Chemistry and Physics 8, nr 10 (23.05.2008): 2759–62. http://dx.doi.org/10.5194/acp-8-2759-2008.
Pełny tekst źródłaTurnbull, D. J., i P. W. Schouten. "Utilising polyphenylene oxide for high exposure solar UVA dosimetry". Atmospheric Chemistry and Physics Discussions 8, nr 1 (6.02.2008): 2129–41. http://dx.doi.org/10.5194/acpd-8-2129-2008.
Pełny tekst źródłaJiwani, Aliya Z., i Louis R. Pasquale. "Exfoliation Syndrome and Solar Exposure". International Ophthalmology Clinics 55, nr 4 (2015): 13–22. http://dx.doi.org/10.1097/iio.0000000000000092.
Pełny tekst źródłaTurnbull, D. J., i A. V. Parisi. "Utilising shade to optimize UV exposure for vitamin D". Atmospheric Chemistry and Physics Discussions 8, nr 1 (16.01.2008): 781–96. http://dx.doi.org/10.5194/acpd-8-781-2008.
Pełny tekst źródłaTurnbull, D. J., i A. V. Parisi. "Utilising shade to optimize UV exposure for vitamin D". Atmospheric Chemistry and Physics 8, nr 11 (2.06.2008): 2841–46. http://dx.doi.org/10.5194/acp-8-2841-2008.
Pełny tekst źródłaEl-Swify, M. E., i M. Z. Metias. "Performance of double exposure solar still". Renewable Energy 26, nr 4 (sierpień 2002): 531–47. http://dx.doi.org/10.1016/s0960-1481(01)00160-4.
Pełny tekst źródłaO'Brien, John P. "Vascular Accidents After Actinic (Solar) Exposure." International Journal of Dermatology 26, nr 6 (lipiec 1987): 366–70. http://dx.doi.org/10.1111/j.1365-4362.1987.tb00562.x.
Pełny tekst źródłaDiffey, Brian L. "Human exposure to solar ultraviolet radiation". Journal of Cosmetic Dermatology 1, nr 3 (październik 2002): 124–30. http://dx.doi.org/10.1046/j.1473-2165.2002.00060.x.
Pełny tekst źródłaSayre, R. M., i J. C. Dowdy. "016������Daily non-solar UV exposure". Photodermatology, Photoimmunology & Photomedicine 18, nr 2 (kwiecień 2002): 106. http://dx.doi.org/10.1034/j.1600-0781.2002.180208_16.x.
Pełny tekst źródłaMoore, S. W. "Exposure testing of solar absorber surfaces". Solar Energy Materials 16, nr 5 (listopad 1987): 453–66. http://dx.doi.org/10.1016/0165-1633(87)90037-2.
Pełny tekst źródłaRozprawy doktorskie na temat "Solar exposure"
Laungrungthip, Nuchjira. "Sky detection in images for solar exposure prediction". Diss., Lincoln University, 2008. http://hdl.handle.net/10182/855.
Pełny tekst źródłaWeaver, Bess A. "Solar Ultraviolet Radiation Exposure in Outdoor Work Environment at Bowling Green, Ohio". University of Toledo Health Science Campus / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=mco1211995092.
Pełny tekst źródłaSchouten, Peter. "Better characterisation of the underwater solar ultraviolet environment using a high-exposure dosimeter". University of Southern Queensland, Faculty of Sciences, 2009. http://eprints.usq.edu.au/archive/00006248/.
Pełny tekst źródłaCobb, Jennifer L. "Validation of a Sun-Exposure Questionnaire for Adolescent Girls". Fogler Library, University of Maine, 2001. http://www.library.umaine.edu/theses/pdf/CobbJL2001.pdf.
Pełny tekst źródłaTurnbull, David J. "Development of an improved shade environment for the reduction of personal UV exposure". University of Southern Queensland, Faculty of Sciences, 2005. http://eprints.usq.edu.au/archive/00001519/.
Pełny tekst źródłaKelbch, Alexander [Verfasser]. "Investigations to quantify individual exposure to solar ultraviolet erythemal radiation including cloud meteorological impact / Alexander Kelbch". Bonn : Universitäts- und Landesbibliothek Bonn, 2020. http://d-nb.info/1218301309/34.
Pełny tekst źródłaLeitão, José Maurício de Moura. "Estudo de materiais poliméricos para a plicação em coletores solares planos". Universidade do Vale do Rio dos Sinos, 2018. http://www.repositorio.jesuita.org.br/handle/UNISINOS/7650.
Pełny tekst źródłaMade available in DSpace on 2019-03-13T15:52:53Z (GMT). No. of bitstreams: 1 José Maurício de Moura Leitão_.pdf: 2775602 bytes, checksum: b3838f30f897415be8b7b629885f3a15 (MD5) Previous issue date: 2018-11-21
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Eficiência e economia na produção de energia são fatores-chave no desenvolvimento social e econômico de um país. A energia solar é uma fonte de energia limpa e renovável, utilizada em sua maior parte para o aquecimento de água por meio de coletores solares. Nos últimos 15 anos, os coletores solares planos vêm, devido ao apelo mundial para o uso de materiais mais facilmente recicláveis e ao baixo custo, utilizando cada vez mais materiais poliméricos, substituindo os convencionais. Para analisar quais materiais poliméricos podem ser usados em coletores solares planos, este trabalho realizou um teste de intemperismo acelerado nos materiais polissulfona (PSU), polietileno (PE) e policarbonato (PC). Destacam-se o PSU e o PE. O PSU tem o melhor resultado em relação ao nível de degradação, pois sua cadeia polimérica é composta por anéis aromáticos e fortes ligações de carbono, enxofre e oxigênio dentro da espinha dorsal do polímero. Adicionalmente, foram realizadas análises do infravermelho nos materiais envelhecidos na câmara de intemperismo acelerado pelo método ATR ou refletância total atenuada. Eles apresentaram, na cadeia molecular, pequenas mudanças nos espectros na região do infravermelho à medida que o tempo exposto na câmara de envelhecimento aumentava. Por fim, foi desenvolvida uma simulação numérica de um coletor solar plano na plataforma ESS (Engineering Equation Solver) em que foi simulado o efeito do número de tubos no absorvedor com diferentes materiais e foi simulada uma geometria de tubos de sessão quadrada no absorvedor. A simulação apresentou o melhor resultado com um absorvedor construído com 100 tubos de sessão quadrada de polissulfona, no qual a eficiência teoricamente pode chegar a 81,62%.
Efficiency and economy in energy production are key factors in the social and economic development of a country. Solar energy is a source of clean and renewable energy used for heating water through solar collectors. Over the past 15 years, due to the worldwide appeal for the use of more readily recyclable materials and their low cost, flat solar collectors have increasingly used polymeric materials to replace conventional ones. In order to assess which polymeric materials can be used in flat-plate solar collectors, an accelerated temperature test has been conducted on polysulfone (PSU), polyethylene (PE), and polycarbonate (PC). PSU and EP have stood out. PSU had the best result for degradation because its polymeric chain is composed of aromatic rings and strong bonds of carbon, sulfur and oxygen within the backbone of the polymer. Additionally, infrared analyses have been made of the materials aged in the accelerated temperature chamber according to the ATR method or attenuated total reflectance. They presented small molecular chain changes in the spectra in the infrared region as exposure time in the UV chamber increased. Finally, a numerical simulation of a flat solar collector was developed in the ESS (Engineering Equation Solver) platform in which the effect of the number of tubes in the absorber with different materials was simulated as well a geometry of square session tubes in the absorber. The simulation presented the best result with an absorber built with 100 polysulfone square session tubes, in which efficiency can theoretically reach 81.62%.
Braun, Gunnar Johannes. "Ermittlung des Wissensstandes über Schutzmaßnahmen gegen solare Exposition in Mitgliedsbetrieben als Grundlage für die präventive Tätigkeit der BG ETEM". Master's thesis, Dresden International University, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-235002.
Pełny tekst źródłaStojanovic, Bojan. "Lifetime Performance Assessment of Thermal Systems : Studies on Building, Solar and Disctrict Heating Applications". Doctoral thesis, KTH, Byggvetenskap, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10967.
Pełny tekst źródłaQC 20100810
Peters, Cheryl Elizabeth. "Solar ultraviolet radiation and outdoor workers in Canada : a program of research on exposure assessment, sun protection behaviours and prostate cancer risk". Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/53793.
Pełny tekst źródłaMedicine, Faculty of
Population and Public Health (SPPH), School of
Graduate
Książki na temat "Solar exposure"
W, Wilson John. Improved model for solar cosmic ray exposure in manned earth orbital flights. Hampton, Va: Langley Research Center, 1990.
Znajdź pełny tekst źródłaFive year's outdoor exposure of solar collectors: Renewed performance measurements and determination of the effect on thermal efficiency. Stockholm: Swedish Council for Building Research, 1988.
Znajdź pełny tekst źródłaW, Wilson John. Simplified model for solar cosmic ray exposure in manned earth orbital flights. Hampton, Va: Langley Research Center, 1990.
Znajdź pełny tekst źródłaWeyland, Mark D. Analyses of risks associated with radiation exposure from past major solar particle events. Washington, D. C: NASA, 1991.
Znajdź pełny tekst źródłaDave, Hill. Summary of solar cell data from the Long Duration Exposure Facility (LDEF): Final report, 21 July 1993 - 19 August 1994. Auburn University, AL: Space Power Institute, 1994.
Znajdź pełny tekst źródłaHill, Dave. Summary of solar cell data from the Long Duration Exposure Facility (LDEF): Final report, 21 July 1993 - 19 August 1994. Auburn University, AL: Space Power Institute, 1994.
Znajdź pełny tekst źródłaTownsend, Lawrence W. Preliminary estimates of radiation exposures for manned interplanetary missions from anomalously large solar flare events. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1988.
Znajdź pełny tekst źródłaWhittenberger, J. Daniel. Mechanical properties of pure nickel alloys after long term exposures to LiOH and vacuum at 775 K. [Washington, D.C.]: NASA, 1990.
Znajdź pełny tekst źródłaR, Gillis James, i Langley Research Center, red. Solar exposure of LDEF experiment trays. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.
Znajdź pełny tekst źródłaThomas, Sampair, i United States. National Aeronautics and Space Administration., red. Long Duration Exposure Facility solar illumination data package. [Washington, DC: National Aeronautics and Space Administration, 1990.
Znajdź pełny tekst źródłaCzęści książek na temat "Solar exposure"
Diffey, Brian. "Monitoring Personal Exposure to Solar Ultraviolet Radiation". W Solar Ultraviolet Radiation, 187–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03375-3_14.
Pełny tekst źródłaGomes, Leonardo Mariano, Artur Duarte Loureiro, Guilherme Andriotti Momesso, Mauro Masili i Liliane Ventura. "Automated Sunglasses Lens Exposure Station and the Preliminary Effects of Solar Exposure". W IFMBE Proceedings, 257–60. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-9023-3_46.
Pełny tekst źródłaBerwick, Marianne, Claire Pestak i Nancy Thomas. "Solar Ultraviolet Exposure and Mortality from Skin Tumors". W Sunlight, Vitamin D and Skin Cancer, 342–58. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0437-2_19.
Pełny tekst źródłaMoan, Johan, Mantas Grigalavicius, Arne Dahlback, Zivile Baturaite i Asta Juzeniene. "Solar Ultraviolet Exposure and Mortality from Skin Tumors". W Sunlight, Vitamin D and Skin Cancer, 423–28. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0437-2_24.
Pełny tekst źródłaShanmugasundaram, K., i B. Janarthanan. "Modeling Thermal Asymmetries in Honeycomb Double Exposure Solar Still". W Lecture Notes in Mechanical Engineering, 579–93. India: Springer India, 2012. http://dx.doi.org/10.1007/978-81-322-1007-8_53.
Pełny tekst źródłaEbersberger, B., K. Pierz, F. Karg, H. Kausche, U. Schneider, B. Schröder, W. Krühler i R. Plättner. "Stability of a-Si/Ge:H Device Material to Light and keV-Stress Exposure". W Tenth E.C. Photovoltaic Solar Energy Conference, 1079–82. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_276.
Pełny tekst źródłaKnuschke, P., A. Krins i M. Meurer. "Individual Extent of Solar UV Exposure in Every Day Life". W Fundamentals for the Assessment of Risks from Environmental Radiation, 75–80. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4585-5_11.
Pełny tekst źródłaBerwick, Marianne, i Amy Garcia. "Solar UV Exposure and Mortality from Skin Tumors: An Update". W Sunlight, Vitamin D and Skin Cancer, 143–54. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46227-7_7.
Pełny tekst źródłaMoise, Aurel F., Simone L. Harrison i Peter Gies. "Solar UVR Exposure of Infants and Small Children in Townsville, Australia". W Biologic Effects of Light 1998, 267–73. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5051-8_45.
Pełny tekst źródłaBeck, Peter. "Aircraft Crew Radiation Exposure in Aviation Altitudes During Quiet and Solar Storm Periods". W Astrophysics and Space Science Library, 241–67. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/1-4020-5446-7_22.
Pełny tekst źródłaStreszczenia konferencji na temat "Solar exposure"
Stika, Katherine, Rebecca Smith, Dennis Swartzfager, Donald Huang, Diane Davidson, James Marsh, Robert Agostinelli, John Wyre, Donald Brill i Roger Senigo. "Glass-encapsulant interface characterization following temperature and humidity exposure". W SPIE Solar Energy + Technology, redaktorzy Neelkanth G. Dhere, John H. Wohlgemuth i Kevin Lynn. SPIE, 2010. http://dx.doi.org/10.1117/12.860865.
Pełny tekst źródłaReid, Charles G., Jayesh G. Bokria i Joseph T. Woods. "UV aging and outdoor exposure correlation for EVA PV encapsulants". W SPIE Solar Energy + Technology, redaktorzy Neelkanth G. Dhere, John H. Wohlgemuth i Kevin W. Lynn. SPIE, 2013. http://dx.doi.org/10.1117/12.2028916.
Pełny tekst źródłaMoore, S. W. "Exposure Testing of Solar Absorber Surfaces". W 30th Annual Technical Symposium, redaktorzy Sandor Holly i Carl M. Lampert. SPIE, 1987. http://dx.doi.org/10.1117/12.936695.
Pełny tekst źródłaMelo Filho, José Bione, Maria Carmen Alonso Garcia, Maria Begoña Asenjo, Pedro Bezerra Carvalho i Faustino Chenlo. "Characterization of Photovoltaic Modules After 20 Years Outdoor Exposure". W ISES Solar World Congress 2011. Freiburg, Germany: International Solar Energy Society, 2011. http://dx.doi.org/10.18086/swc.2011.14.12.
Pełny tekst źródłaAlbarado, Tesia L., William A. Hollerman, David Edwards, Whitney Hubbs i Charles Semmel. "Electron Exposure Measurements of Candidate Solar Sail Materials". W ASME 2003 International Solar Energy Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/isec2003-44207.
Pełny tekst źródłaWirth, Jochen, Katrin Scharmach, Karl-Anders Weiss i Michael Köhl. "Stabilization processes and air mass influences for outdoor exposure of thin film modules". W SPIE Solar Energy + Technology, redaktor Louay A. Eldada. SPIE, 2011. http://dx.doi.org/10.1117/12.893698.
Pełny tekst źródłaDeline, Chris A., Joseph A. del Cueto, David S. Albin i Steve R. Rummel. "Metastable electrical characteristics of polycrystalline thin-film photovoltaic modules upon exposure and stabilization". W SPIE Solar Energy + Technology, redaktorzy Neelkanth G. Dhere, John H. Wohlgemuth i Kevin W. Lynn. SPIE, 2011. http://dx.doi.org/10.1117/12.893813.
Pełny tekst źródłaMariano Gomes, Leonardo M., Liliane Ventura, Mauro Masili, Felipe Marques da Silva i Guilherme Andriotti Momesso. "Solar exposure of sunglasses: aging test display". W Ophthalmic Technologies XXVIII, redaktorzy Fabrice Manns, Per G. Söderberg i Arthur Ho. SPIE, 2018. http://dx.doi.org/10.1117/12.2288839.
Pełny tekst źródłaKennedy, C. E., K. Terwilliger i G. J. Jorgensen. "Analysis of Accelerated Exposure Testing of Thin-Glass Mirror Matrix". W ASME 2005 International Solar Energy Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/isec2005-76040.
Pełny tekst źródłaEkechukwu, O. V., Howard O. Njoku i Gerald U. Akubue. "Measured Performances of an Augmented [Double-Exposure Absorber-Plate] Single-Slope Solar Still". W ISES Solar World Congress 2011. Freiburg, Germany: International Solar Energy Society, 2011. http://dx.doi.org/10.18086/swc.2011.05.02.
Pełny tekst źródłaRaporty organizacyjne na temat "Solar exposure"
Levinson, Ronnen, i Hashem Akbari. Effects of composition and exposure on the solar reflectance of Portland cement concrete. Office of Scientific and Technical Information (OSTI), grudzień 2001. http://dx.doi.org/10.2172/820773.
Pełny tekst źródłaTirawat, Robert. Accelerated Exposure Testing of Sundog Solar Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-17-688. Office of Scientific and Technical Information (OSTI), luty 2020. http://dx.doi.org/10.2172/1601585.
Pełny tekst źródłaDickens, Brian, i Eric Byrd. Programs to Estimate UV Dosage and Damage. National Institute of Standards and Technology, wrzesień 1999. http://dx.doi.org/10.6028/nist.ir.7500.
Pełny tekst źródła