Gotowa bibliografia na temat „Solar energy use”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Solar energy use”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Solar energy use"
Becenen, Ismail, Umut Kuzucu i Abdullah Bilekkaya. "Investigation of Solar Energy Use in Agricultural Irrigation". International Journal of Science and Research (IJSR) 11, nr 10 (5.10.2022): 937–43. http://dx.doi.org/10.21275/sr221018042201.
Pełny tekst źródłaFarangiz, Muxamadiyeva, i Xolmurodov Maxmatkarim Pattayevich. "INCREASING THE ENERGY EFFICIENCY OF BUILDINGS USING SOLAR ENERGY". International Journal of Advance Scientific Research 03, nr 06 (1.06.2023): 342–45. http://dx.doi.org/10.37547/ijasr-03-06-55.
Pełny tekst źródłaFeng, Jingshang. "Efficient use of solar energy". International Journal of Energy 1, nr 1 (1.12.2022): 18–21. http://dx.doi.org/10.54097/ije.v1i1.3229.
Pełny tekst źródłaRao, G. L., i V. M. K. Sastri. "Land use and solar energy". Habitat International 11, nr 3 (styczeń 1987): 61–75. http://dx.doi.org/10.1016/0197-3975(87)90020-8.
Pełny tekst źródłaMacKay, David J. C. "Solar energy in the context of energy use, energy transportation and energy storage". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, nr 1996 (13.08.2013): 20110431. http://dx.doi.org/10.1098/rsta.2011.0431.
Pełny tekst źródłaKumar, Laveet, Jahanzaib Soomro, Hafeez Khoharo i Mamdouh El Haj Assad. "A comprehensive review of solar thermal desalination technologies for freshwater production". AIMS Energy 11, nr 2 (2023): 293–318. http://dx.doi.org/10.3934/energy.2023016.
Pełny tekst źródłaAl-wahid, Wisam A. Abd, Hussein Awad Kurdi Saad, Zahraa Hamzah Hasan i Kamaruzzaman Sopian. "Experimental study of the performance of hemispherical solar still with optimum value of rocks as heat transfer enhancers". AIMS Energy 10, nr 4 (2022): 885–99. http://dx.doi.org/10.3934/energy.2022040.
Pełny tekst źródłaHuerta Mascotte, Eduardo, Ruth Ivonne Mata Chávez, Julián Moisés Estudillo Ayala, Juan Manuel Sierra Hernández, Igor Guryev i Rocío Alfonsina Lizárraga Morales. "Solar cell characteristics study for solar energy efficient use". Acta Universitaria 26, NE-1 (marzec 2016): 30–34. http://dx.doi.org/10.15174/au.2016.868.
Pełny tekst źródłaAbdullayev, J. S. "On the use of solar energy in Azerbaijan". Azerbaijan Oil Industry, nr 03 (15.03.2023): 37–43. http://dx.doi.org/10.37474/0365-8554/2023-3-37-43.
Pełny tekst źródłaLewis, N. S. "Toward Cost-Effective Solar Energy Use". Science 315, nr 5813 (9.02.2007): 798–801. http://dx.doi.org/10.1126/science.1137014.
Pełny tekst źródłaRozprawy doktorskie na temat "Solar energy use"
Van, Zyl GHC. "Solar energy for domestic use". Thesis, Cape Technikon, 2000. http://hdl.handle.net/20.500.11838/884.
Pełny tekst źródłaThe demand for pool heating has increased dramatically over the last few years. This is ascribed to the idea that a swimming pool is expensive and can only be used for four months of the year. Therefore, a need for a relatively inexpensive solar heating system, capable of heating pool water to comfortable temperatures for an extended period, does exist. The least expensive solar heating system for swimming pool heating on the market in South Africa is in the order of R 11000. This is a fixed system, usually mounted on the roof of a house. In order to ensure the safety of minors, a safety net or sail must be installed. This is an additional cost, which approximates R1500, yielding a total cost for safety and heating in the order of R 12500. Copper pipes packed in black material are utilised in these conventional heating systems, and it is the cost of this good heat conductor that makes these units expensive. In this study an alternative pool heating system constructed of PVC was investigated. The system is designed to be flexible, mobile, act as a safety mechanism and absorbs the maximum amount of solar energy available. Dark blue material as opposed to black PVC was selected for aesthetic reasons at the expense of maximum efficiency. The material strength was tested as well as the strength of adhesion. The influence of factors such as exposure to the sun and the effect of water containing chlorine and acid on the material were evaluated. Also, various means of channelling the water through the system for increased efficiency was investigated. A pilot model was constructed and its performance evaluated. It has been concluded that the alternative approach provides effective heating at a lower cost than current systems. Also, the durability of the design was found to be acceptable.
Hedenberg, Ola, i John Wallander. "Solar energy for domestic use in southern Brazil". Thesis, Halmstad University, School of Business and Engineering (SET), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-1603.
Pełny tekst źródłaAlmost all the domestic water in Brazil is heated with an electrical heater directly by the end consumer. A typical heater has an effect of 5 400 W and when the whole population takes a shower in the evening it causes big peaks in the electrical grid. This consumption peaks could be reduced by simple and cheap solar collector system.
Different system technologies and the most important parts of a solar collector system are described in the technical background. In Lajeado almost every system is a self-circulated system because of the simplicity and the lower costs.
Solar cooling as an alternative to the vapor compressor chillers has been studied. The cooling demand is biggest when the sun shines; this makes the sun perfect as a source to cooling. The ab- and adsorption chillers as a method in the future have been discussed in this paper; however it has only been studied briefly because small scale chillers using the technology can not be found on the market yet.
A number of different systems have been dimensioned after the existing conditions of Lajeado, the town where the project has been carried out in. Prizes and costs for both installation and materials come from the local solar collector supplier. With this as a background; several systems for various hot water demands has been dimensioned and costs and repayment time been calculated. A study of all the systems shows that, if the hot water demand increases and the systems get bigger, the profitability grows and the repayment time becomes shorter, down to three years. In almost every case the repayment time was under eight years, which makes solar heating attractive and the profit is good for the southern Brazil.
Ek, Ludvig, i Tim Ottosson. "Optimization of energy storage use for solar applications". Thesis, Linköpings universitet, Elektroniska Kretsar och System, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-149305.
Pełny tekst źródłaNilsson, Nina. "Increased use of solar energy in commercial buildings by integrating energy storage". Thesis, KTH, Mark- och vattenteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190614.
Pełny tekst źródłaBurashid, Khalid Ahmed. "Solar energy in Bahrain : prospects and potential use in desalination". Thesis, University of the West of Scotland, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262640.
Pełny tekst źródłaDeğirmencioğlu, Can İlken Zafer. "The Use Of Cell Polyurethane Foams In Air-Type Solar Collectors As The Heat Absorbing Element/". [s.l.]: [s.n.], 2006. http://library.iyte.edu.tr/tezler/master/makinamuh/T000366.pdf.
Pełny tekst źródłaKeywords: Solar energy, solar collectors, solar energy systems, air heating, polyurethane foam. Includes bibliographical references (leaves.60-62).
Wang, Jianjun. "Modelling surface solar energy by use of landsat thematic mapper data and digital elevation models". Thesis, University of Reading, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336667.
Pełny tekst źródłaYousif, Kamil Mansoor. "Studies of degradation modes of molybdenum black coatings in relation to their use as solar selective absorbers". Thesis, Brunel University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333363.
Pełny tekst źródłaTadlock, James Eric. "A GIS analysis on possible photovoltaic cell use for energy reduction during peak hours in Huntington, West Virginia". [Huntington, WV : Marshall University Libraries], 2009. http://www.marshall.edu/etd/descript.asp?ref=962.
Pełny tekst źródłaKhan, Fahad. "Spherical Tanks for Use in Thermal Energy Storage Systems". Digital WPI, 2015. https://digitalcommons.wpi.edu/etd-dissertations/187.
Pełny tekst źródłaKsiążki na temat "Solar energy use"
Daniels, Farrington. Direct use of the Sun's energy. Bronx, New York: Ishi Press International, 2010.
Znajdź pełny tekst źródłaKodis, Michelle. Turn me on: 100 easy ways to use solar energy. Layton, Utah: Gibbs Smith, 2009.
Znajdź pełny tekst źródłaSheila, Blum, Holtz Michael J i International Energy Agency. Solar Heating and Cooling Programme. Task VIII, red. Design tool selection and use. Washington, D.C: U.S. G.P.O., 1988.
Znajdź pełny tekst źródłaS, Mehos Mark, i National Renewable Energy Laboratory (U.S.), red. Enabling greater penetration of solar power via the use of CSP with thermal energy storage. Golden, CO: National Renewable Energy Laboratory, 2011.
Znajdź pełny tekst źródłaThornton, Mark Edward. Object-orientated simulation of passive solar energy use in buildings. Birmingham: University of Birmingham, 1997.
Znajdź pełny tekst źródła1931-, Branover Herman, i Israel. Miśrad ha-energyah ṿeha-tashtit. Agaf meḥḳar u-fituaḥ., red. Techno-economical study of solar energy technologies in Russia and in Israel and development of conceptions for the use of solar energy in various fields. [Jerusalem]: State of Israel, Ministry of Energy and Infrastructure, Research and Development Division, 1993.
Znajdź pełny tekst źródłaDhingra, K. K. Efficient use of solar energy for crop production: Final technical report of the PL-480 project. Ludhiana, Punjab, India: Dept. of Agronomy, Punjab Agricultural University, 1987.
Znajdź pełny tekst źródłaMa, Zhiwen. Advanced supercritical carbon dioxide power cycle configurations for use in concentrating solar power systems: Preprint. Golden, CO]: National Renewable Energy Laboratory, 2011.
Znajdź pełny tekst źródłaMacknick, Jordan. Overview of opportunities for co-location of solar energy technologies and vegetation. Golden, CO: National Renewable Energy Laboratory, 2013.
Znajdź pełny tekst źródłaSibikin, Mihail. Alternative energy sources. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1862890.
Pełny tekst źródłaCzęści książek na temat "Solar energy use"
Girtan, Mihaela. "Energy Conversion or Direct Use?" W Future Solar Energy Devices, 97–101. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67337-0_5.
Pełny tekst źródłaMorgan, Lynette. "The greenhouse environment and energy use." W Hydroponics and protected cultivation: a practical guide, 30–46. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0003.
Pełny tekst źródłaMorgan, Lynette. "The greenhouse environment and energy use." W Hydroponics and protected cultivation: a practical guide, 30–46. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0030.
Pełny tekst źródłaBhalla, Vishal, Vikrant Khullar, Harjit Singh i Himanshu Tyagi. "Solar Thermal Energy: Use of Volumetric Absorption in Domestic Applications". W Applications of Solar Energy, 99–112. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7206-2_6.
Pełny tekst źródłaEffelsberg, H., i B. Barbknecht. "The Use of Thermal Solar Energy to Treat Waste Materials". W Solar Thermal Energy Utilization, 413–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-52342-7_8.
Pełny tekst źródłaJusti, Eduard W. "The Basis for the Use of Solar Energy". W A Solar—Hydrogen Energy System, 89–121. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1781-4_5.
Pełny tekst źródłaSfintes, Anda-Ioana, i Radu Sfintes. "Rethinking Architectural Spaces for Solar Energy Better Use". W Springer Proceedings in Energy, 487–99. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55757-7_35.
Pełny tekst źródłaMotsamai, Oboetswe, i Kealeboga Kebaitse. "Use of concentrating solar technology on short solar chimney power plant". W Advances in Energy and Environment Research, 27–32. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315212876-7.
Pełny tekst źródłaBaumgartner, F. P., M. Simon i R. Burkhardt. "Tino - A Solar Car for Daily Use". W Tenth E.C. Photovoltaic Solar Energy Conference, 1409–10. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_350.
Pełny tekst źródłaSchrag, T., M. Ehrenwirth, T. Ramm, A. Vannahme i C. Trinkl. "Solar Energy Use in District Heating Networks". W ICREEC 2019, 3–10. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5444-5_1.
Pełny tekst źródłaStreszczenia konferencji na temat "Solar energy use"
Kumar, Alok, Ashish K. Singhal, Subinoy Roy, Mohit Kumar, MD Nadir i Namrata Talegaonkar. "Enhancing Home Energy Use with Solar Panels and Battery Technology". W 2024 IEEE 3rd International Conference on Electrical Power and Energy Systems (ICEPES), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/icepes60647.2024.10653466.
Pełny tekst źródłaKostuk, Raymond K., Jose Castillo, Juan M. Russo i Glenn Rosenberg. "Spectral-shifting and holographic planar concentrators for use with photovoltaic solar cells". W Solar Energy + Applications, redaktor Martha Symko-Davies. SPIE, 2007. http://dx.doi.org/10.1117/12.736542.
Pełny tekst źródłaOreski, Gernot, i Kenneth Möller. "Qualification of polymeric components for use in PV modules". W SPIE Solar Energy + Technology, redaktorzy Neelkanth G. Dhere, John H. Wohlgemuth i Kevin W. Lynn. SPIE, 2011. http://dx.doi.org/10.1117/12.893451.
Pełny tekst źródłaBystronski, Yasmin de A., Betina T. Martau i Waldo I. Costa-Neto. "Use of Light Pipe and Electronic Heliostat for Lighting of Underground Areas in Porto Alegre". W American Solar Energy Society National Solar Conference 2017. Freiburg, Germany: International Solar Energy Society, 2017. http://dx.doi.org/10.18086/solar.2017.01.03.
Pełny tekst źródłaFranklin, J. B., G. B. Smith i A. E. Earp. "A critical hurdle to widespread use of polymer based luminescent solar concentrators". W SPIE Solar Energy + Technology, redaktorzy Neelkanth G. Dhere, John H. Wohlgemuth i Kevin W. Lynn. SPIE, 2013. http://dx.doi.org/10.1117/12.2022802.
Pełny tekst źródłaOkafor, Gabriel, i Hessam Taherian. "Multi-Generation Modeling and Building Energy use optimization based on a Natural Gas driven Internal Combustion Engine". W American Solar Energy Society National Solar Conference 2018. Freiburg, Germany: International Solar Energy Society, 2018. http://dx.doi.org/10.18086/solar.2018.01.08.
Pełny tekst źródłaMiller, David C., i John H. Wohlgemuth. "Examination of a junction-box adhesion test for use in photovoltaic module qualification". W SPIE Solar Energy + Technology, redaktorzy Neelkanth G. Dhere i John H. Wohlgemuth. SPIE, 2012. http://dx.doi.org/10.1117/12.929793.
Pełny tekst źródłaStephens, Kyle, i J. Roger P. Angel. "Comparison of collection and land use efficiency for various solar concentrating field geometries". W SPIE Solar Energy + Technology, redaktorzy Kaitlyn VanSant i Adam P. Plesniak. SPIE, 2012. http://dx.doi.org/10.1117/12.930240.
Pełny tekst źródłaReicher, David W., Roberto Christian, Patrick Davidson i Stanley Z. Peplinski. "Use of multiple DC magnetron deposition sources for uniform coating of large areas". W SPIE Solar Energy + Technology, redaktorzy Alan E. Delahoy i Louay A. Eldada. SPIE, 2009. http://dx.doi.org/10.1117/12.824882.
Pełny tekst źródłaMakiwa, G., G. Katumba i L. Olumekor. "Synthesis and optical characterization of C-SiO 2 and C-NiO sol-gel composite films for use as selective solar absorbers". W Solar Energy + Applications, redaktor Benjamin K. Tsai. SPIE, 2008. http://dx.doi.org/10.1117/12.792654.
Pełny tekst źródłaRaporty organizacyjne na temat "Solar energy use"
Salonvaara, Mikael, i André Desjarlais. The impact of the solar absorption coefficient of roof and wall surfaces on energy use and peak demand. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541650886.
Pełny tekst źródłaMargolis, R., i J. Zuboy. Nontechnical Barriers to Solar Energy Use: Review of Recent Literature. Office of Scientific and Technical Information (OSTI), wrzesień 2006. http://dx.doi.org/10.2172/893639.
Pełny tekst źródłaJackson, Allison, Kate Doubleday, Brittany Staie, Allison Perna, Mariel Sabraw, Liz Voss, Apolonia Alvarez, Byron Kominek i Jordan Macknick. County Land-Use Regulations for Solar Energy Development in Colorado. Office of Scientific and Technical Information (OSTI), kwiecień 2024. http://dx.doi.org/10.2172/2339555.
Pełny tekst źródłaSengupta, M., S. Kurtz, A. Dobos, S. Wilbert, E. Lorenz, D. Renné, D. Myers, S. Wilcox, P. Blanc i R. Perez. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications. IEA Solar Heating and Cooling Programme, luty 2015. http://dx.doi.org/10.18777/ieashc-task46-2015-0001.
Pełny tekst źródłaCole, Wesley, i Anthony Lopez. Solar Siting and Land-Use in Decarbonized Energy Systems: Final Technical Report. Office of Scientific and Technical Information (OSTI), listopad 2024. https://doi.org/10.2172/2479267.
Pełny tekst źródłaBaker, Nicholas, Rafaella Belmonte Monteiro, Alessia Boccalatte, Karine Bouty, Johannes Brozovsky, Cyril Caliot, Rafael Campamà Pizarro i in. Identification of existing tools and workflows for solar neighborhood planning. Redaktor Jouri, Kanters. IEA SHC Task 63, czerwiec 2022. http://dx.doi.org/10.18777/ieashc-task63-2022-0001.
Pełny tekst źródłaSengupta, Manajit, Aron Habte, Christian Gueymard, Stefan Wilbert i Dave Renné, red. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition. IEA SHC Task 46, grudzień 2017. http://dx.doi.org/10.18777/ieashc-task46-2017-0001.
Pełny tekst źródłaSengupta, Manajit, Aron Habte, Christian Gueymard, Stefan Wilbert i Dave Renne. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition. Office of Scientific and Technical Information (OSTI), grudzień 2017. http://dx.doi.org/10.2172/1411856.
Pełny tekst źródłaSengupta, Manajit, Aron Habte, Stefan Wilbert, Christian Gueymard i Jan Remund. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Third Edition. Office of Scientific and Technical Information (OSTI), kwiecień 2021. http://dx.doi.org/10.2172/1778700.
Pełny tekst źródłaSengupta, Manajit, Aron Habte, Stefan Wilbert, Christian Gueymard, Jan Remund, Elke Lorenz, Wilfried van Sark i Adam Jensen. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Fourth Edition. Office of Scientific and Technical Information (OSTI), wrzesień 2024. http://dx.doi.org/10.2172/2448063.
Pełny tekst źródła