Artykuły w czasopismach na temat „Solar cells”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Solar cells.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Solar cells”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Rosana, N. T. Mary, i Joshua Amarnath . D. "Dye Sensitized Solar Cells for The Transformation of Solar Radiation into Electricity". Indian Journal of Applied Research 4, nr 6 (1.10.2011): 169–70. http://dx.doi.org/10.15373/2249555x/june2014/53.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Majidzade, Vusala A. "Sb2Se3-BASED SOLAR CELLS: OBTAINING AND PROPERTIES". Chemical Problems 18, nr 2 (2020): 181–98. http://dx.doi.org/10.32737/2221-8688-2020-2-181-198.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Vlaskin, V. I. "Nanocrystalline silicon carbide films for solar cells". Semiconductor Physics Quantum Electronics and Optoelectronics 19, nr 3 (30.09.2016): 273–78. http://dx.doi.org/10.15407/spqeo19.03.273.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Tsubomura, Hiroshi, i Hikaru Kobayashi. "Solar cells". Critical Reviews in Solid State and Materials Sciences 18, nr 3 (styczeń 1993): 261–326. http://dx.doi.org/10.1080/10408439308242562.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Loferski, Joseph. "Solar cells". Solar Energy 42, nr 4 (1989): 355–56. http://dx.doi.org/10.1016/0038-092x(89)90040-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ma, Dongling. "Solar Energy and Solar Cells". Nanomaterials 11, nr 10 (12.10.2021): 2682. http://dx.doi.org/10.3390/nano11102682.

Pełny tekst źródła
Streszczenie:
Thanks to the helpful discussions and strong support provided by the Publisher and Editorial Staff of Nanomaterials, I was appointed as a section Editor-in-Chief of the newly launched section “Solar Energy and Solar Cells” earlier this year (2021) [...]
Style APA, Harvard, Vancouver, ISO itp.
7

K Sengar, Saurabh. "CIGS based Solar Cells - A Scaps 1D Study". International Journal of Science and Research (IJSR) 13, nr 7 (5.07.2024): 969–71. http://dx.doi.org/10.21275/sr24719130851.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Mohammad Bagher, Askari. "Comparison of Organic Solar Cells and Inorganic Solar Cells". International Journal of Renewable and Sustainable Energy 3, nr 3 (2014): 53. http://dx.doi.org/10.11648/j.ijrse.20140303.12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Mathew, Xavier. "Solar cells and solar energy materials". Solar Energy 80, nr 2 (luty 2006): 141. http://dx.doi.org/10.1016/j.solener.2005.06.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Graetzel, Michael. "Editorial: Solar Cells and Solar Fuels". Current Opinion in Electrochemistry 2, nr 1 (kwiecień 2017): A4. http://dx.doi.org/10.1016/j.coelec.2017.05.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Carlson, Geoffrey. "India – Certain Measures Relating to Solar Cells and Solar Modules (India–Solar Cells), DS456". World Trade Review 16, nr 3 (14.06.2017): 549–50. http://dx.doi.org/10.1017/s1474745617000118.

Pełny tekst źródła
Streszczenie:
This dispute concerned domestic content requirements (DCR measures) imposed under India's National Solar Mission. These requirements are imposed on solar power developers selling electricity to the government under the National Solar Mission. They concern solar cells and solar modules, which are used to generate solar power.
Style APA, Harvard, Vancouver, ISO itp.
12

LEE, Kangmin, i Kwanyong SEO. "Transparent Solar Cells". Physics and High Technology 28, nr 5 (31.05.2019): 21–26. http://dx.doi.org/10.3938/phit.28.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Zhuravleva, T. S., i A. V. Vannikov. "Polymer Solar Cells". Materials Science Forum 21 (styczeń 1991): 203–0. http://dx.doi.org/10.4028/www.scientific.net/msf.21.203.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Roose, Bart. "Perovskite Solar Cells". Energies 15, nr 17 (1.09.2022): 6399. http://dx.doi.org/10.3390/en15176399.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Chen, Guanying, Zhijun Ning i Hans Ågren. "Nanostructured Solar Cells". Nanomaterials 6, nr 8 (9.08.2016): 145. http://dx.doi.org/10.3390/nano6080145.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Sessolo, Michele, i Henk J. Bolink. "Hovering solar cells". Nature Materials 14, nr 10 (24.08.2015): 964–66. http://dx.doi.org/10.1038/nmat4405.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Fang, Zhimin, Shizhe Wang, Shangfeng Yang i Liming Ding. "CsAg2Sb2I9 solar cells". Inorganic Chemistry Frontiers 5, nr 7 (2018): 1690–93. http://dx.doi.org/10.1039/c8qi00309b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Greenham, Neil C., i Michael Grätzel. "Nanostructured solar cells". Nanotechnology 19, nr 42 (25.09.2008): 420201. http://dx.doi.org/10.1088/0957-4484/19/42/420201.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Greenham, Neil C. "Polymer solar cells". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, nr 1996 (13.08.2013): 20110414. http://dx.doi.org/10.1098/rsta.2011.0414.

Pełny tekst źródła
Streszczenie:
This article reviews the motivations for developing polymer-based photovoltaics and describes some of the material systems used. Current challenges are identified, and some recent developments in the field are outlined. In particular, recent work to image and control nanostructure in polymer-based solar cells is reviewed, and very recent progress is described using the unique properties of organic semiconductors to develop strategies that may allow the Shockley–Queisser limit to be broken in a simple photovoltaic cell.
Style APA, Harvard, Vancouver, ISO itp.
20

Garnett, Erik C., Mark L. Brongersma, Yi Cui i Michael D. McGehee. "Nanowire Solar Cells". Annual Review of Materials Research 41, nr 1 (4.08.2011): 269–95. http://dx.doi.org/10.1146/annurev-matsci-062910-100434.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Pudasaini, Pushpa Raj, Sanjay K. Srivastava, Yaohui Zhan, Francisco Ruiz-Zepeda i Bill Pandit. "Nanostructured Solar Cells". International Journal of Photoenergy 2017 (2017): 1–2. http://dx.doi.org/10.1155/2017/1289349.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Kondrotas, Rokas, Chao Chen i Jiang Tang. "Sb2S3 Solar Cells". Joule 2, nr 5 (maj 2018): 857–78. http://dx.doi.org/10.1016/j.joule.2018.04.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Notman, Nina. "Underwater solar cells". Materials Today 15, nr 7-8 (lipiec 2012): 301. http://dx.doi.org/10.1016/s1369-7021(12)70134-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Gregg, Brian A. "Excitonic Solar Cells". Journal of Physical Chemistry B 107, nr 20 (maj 2003): 4688–98. http://dx.doi.org/10.1021/jp022507x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Gerischer, H. "Photoelectrochemical solar cells". Electrochimica Acta 34, nr 6 (czerwiec 1989): 891. http://dx.doi.org/10.1016/0013-4686(89)87128-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Li, Gang, Rui Zhu i Yang Yang. "Polymer solar cells". Nature Photonics 6, nr 3 (29.02.2012): 153–61. http://dx.doi.org/10.1038/nphoton.2012.11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Wagner, P. "Silicon solar cells". Microelectronics Journal 19, nr 4 (lipiec 1988): 37–50. http://dx.doi.org/10.1016/s0026-2692(88)80043-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Palewicz, Marcin, i Agnieszka Iwan. "Polymer solar cells". Polimery 56, nr 03 (marzec 2011): 99–107. http://dx.doi.org/10.14314/polimery.2011.099.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Vigil, Elena. "Nanostructured Solar Cells". Key Engineering Materials 444 (lipiec 2010): 229–54. http://dx.doi.org/10.4028/www.scientific.net/kem.444.229.

Pełny tekst źródła
Streszczenie:
Novel types of solar cells based on nanostructured materials are intensively studied because of their prospective applications and interesting new working principle – essentially due to the nanomaterials used They have evolved from dye sensitized solar cells (DSSC) in the quest to improve their behavior and characteristics. Their nanocrystals (ca. 10-50 nm) do not generally show the confinement effect present in quantum dots of size ca. 1-10nm where electron wave functions are strongly confined originating changes in the band structure. Nonetheless, the nanocrystalline character of the semiconductor used determines a different working principle; which is explained, although it is not completely clear so far,. Different solid nanostructured solar cells are briefly reviewed together with research trends. Finally, the influence of the photoelectrode electron-extracting contact is analyzed.
Style APA, Harvard, Vancouver, ISO itp.
30

Tregnago, Giulia. "Washable solar cells". Nature Energy 4, nr 2 (luty 2019): 90. http://dx.doi.org/10.1038/s41560-019-0341-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Kyaw, Aung Ko Ko, Antonio Otavio T. Patrocinio, Dewei Zhao i Victor Brus. "Heterojunction Solar Cells". International Journal of Photoenergy 2014 (2014): 1–2. http://dx.doi.org/10.1155/2014/163984.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Sfaelou, S., D. Raptis, V. Dracopoulos i P. Lianos. "BiOI solar cells". RSC Advances 5, nr 116 (2015): 95813–16. http://dx.doi.org/10.1039/c5ra19835f.

Pełny tekst źródła
Streszczenie:
An inorganic solar cell was constructed using a thin compact supporting layer of titania with BiOI nanoflakes as a functional material, a Pt/FTO cathode and a I3/I redox electrolyte.
Style APA, Harvard, Vancouver, ISO itp.
33

Catchpole, K. R., i A. Polman. "Plasmonic solar cells". Optics Express 16, nr 26 (17.12.2008): 21793. http://dx.doi.org/10.1364/oe.16.021793.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Andreev, V. M. "Heterostructure solar cells". Semiconductors 33, nr 9 (wrzesień 1999): 942–45. http://dx.doi.org/10.1134/1.1187808.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Günes, Serap, i Niyazi Serdar Sariciftci. "Hybrid solar cells". Inorganica Chimica Acta 361, nr 3 (luty 2008): 581–88. http://dx.doi.org/10.1016/j.ica.2007.06.042.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Batchelor, R. A., i A. Hamnett. "Photoelectrochemical solar cells". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 260, nr 1 (luty 1989): 245–46. http://dx.doi.org/10.1016/0022-0728(89)87117-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Gratzel, Michael. "Nanocrystalline solar cells". Renewable Energy 5, nr 1-4 (sierpień 1994): 118–33. http://dx.doi.org/10.1016/0960-1481(94)90361-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Eldallal, G. M., M. S. Abou-Elwafa, M. A. Elgammal i S. M. Bedair. "concentrator solar cells". Renewable Energy 6, nr 7 (październik 1995): 713–18. http://dx.doi.org/10.1016/0960-1481(95)00010-h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Pagliaro, Mario, Rosaria Ciriminna i Giovanni Palmisano. "Flexible Solar Cells". ChemSusChem 1, nr 11 (24.11.2008): 880–91. http://dx.doi.org/10.1002/cssc.200800127.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Brabec, C. J., N. S. Sariciftci i J. C. Hummelen. "Plastic Solar Cells". Advanced Functional Materials 11, nr 1 (luty 2001): 15–26. http://dx.doi.org/10.1002/1616-3028(200102)11:1<15::aid-adfm15>3.0.co;2-a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Wenham, S. R., i M. A. Green. "Silicon solar cells". Progress in Photovoltaics: Research and Applications 4, nr 1 (styczeń 1996): 3–33. http://dx.doi.org/10.1002/(sici)1099-159x(199601/02)4:1<3::aid-pip117>3.0.co;2-s.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Ito, Seigo. "Printable solar cells". Wiley Interdisciplinary Reviews: Energy and Environment 4, nr 1 (13.05.2014): 51–73. http://dx.doi.org/10.1002/wene.112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Wöhrle, Dieter, i Dieter Meissner. "Organic Solar Cells". Advanced Materials 3, nr 3 (marzec 1991): 129–38. http://dx.doi.org/10.1002/adma.19910030303.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

ARAKAWA, Hironori. "Future Prospects of Organic Solar Cells-Dye Sensitized Solar Cells-". Kobunshi 52, nr 5 (2003): 320–23. http://dx.doi.org/10.1295/kobunshi.52.320.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Omarova, Zh. "PERFORMANCE SIMULATION OF ECO-FRIENDLY SOLAR CELLS BASED ONCH3NH3SnI3". Eurasian Physical Technical Journal 19, nr 2 (40) (15.06.2022): 58–64. http://dx.doi.org/10.31489/2022no2/58-64.

Pełny tekst źródła
Streszczenie:
Large-scale deployment of the perovskite photovoltaic technology using such high-performance materials as СH3NH3PbI3may face serious environmental issuesin the future. Implementation of perovskite solar cellbased on Sncouldbe an alternative solution for commercialisation. This paperpresents the results of a theoretical study of a lead-free, environmentally-friendlyphotovoltaic cellusing СH3NH3SnI3as a light-absorbing layer. The characteristics of a photovoltaic cell based on perovskite were modelled using the SCAPS-1D program. Various thicknesses of the absorbing layer were analysed,and an optimised device structure is proposed,demonstratinga high power conversionefficiencyof up to 28% at ambient temperature. The analysis of the thicknesses of the СH3NH3SnI3absorbing layer revealedthat at a thickness of 500 nm, performance is demonstrated with an efficiencyof 27.41 %, a fill factor of 85.92 %, a short circuit current density of 32.60 mA/cm2and an open-circuit voltage of 0.98 V. The obtained numerical results indicate that the СH3NH3SnI3absorbing layer may be a viable replacement forthe standard materials and may form the basis of a highly efficient technology of the environmentally-friendlyperovskite solar cells.
Style APA, Harvard, Vancouver, ISO itp.
46

Kadhim, Adam K. "Stable Perovskite Solar Cells Using Reduced Graphene Oxide Additive". Revista Gestão Inovação e Tecnologias 11, nr 3 (30.06.2021): 463–69. http://dx.doi.org/10.47059/revistageintec.v11i3.1950.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Shuai Gu, Shuai Gu, Pengchen Zhu Pengchen Zhu, Renxing Lin Renxing Lin, Mingyao Tang Mingyao Tang, Shining Zhu Shining Zhu i Jia Zhu Jia Zhu. "Thermal-stable mixed-cation lead halide perovskite solar cells". Chinese Optics Letters 15, nr 9 (2017): 093501. http://dx.doi.org/10.3788/col201715.093501.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Martynyuk, Valeriy, Juliy Boiko, Marcin Łukasiewicz, Ewa Kuliś i Janusz Musiał. "Diagnostics of Solar Cells". MATEC Web of Conferences 302 (2019): 01013. http://dx.doi.org/10.1051/matecconf/201930201013.

Pełny tekst źródła
Streszczenie:
The paper represents the mathematical model for diagnostics of solar cell. The research objectives are the problem of determining a solar cell technical condition during its operation. The solar cell diagnostics is based on the mathematical model of solar cells. The single-diode solar cell model is characterized by a slight deviation of the theoretically calculated characteristics from the characteristics of the real solar cell, one of the reasons being the complexity of the accurate measurement of the series resistance. The single-diode solar cell model uses the current and voltage ratio in the form of an implicit function and it cannot be solved directly. For its solution it is necessary to use numerical methods. This is main disadvantage of the single-diode solar cell model. The methodological approach to increasing the reliability of the solar cell diagnostic has been proposed, in terms of multi-parameter the solar cell diagnostic by applying the solar cell impedance model.
Style APA, Harvard, Vancouver, ISO itp.
49

Wang, Jiaming. "Comparison of development prospects between silicon solar cells and perovskite solar cells". Highlights in Science, Engineering and Technology 27 (27.12.2022): 512–18. http://dx.doi.org/10.54097/hset.v27i.3808.

Pełny tekst źródła
Streszczenie:
The development history, preparation process, structure and working principle of silicon solar cells and perovskite solar cells are introduced. The main parameters and production processes of the two kinds of solar cells are compared. The advantages and disadvantages of perovskite solar energy compared with existing solar cells in market application are analyzed and summarized, including good light absorption, high energy conversion efficiency and simple process flow, The problems of cost, size and stability of perovskite solar cells in market application are pointed out and the solutions are given. Perovskite solar cells have an excellent development prospect. Short circuit voltage, open circuit current and efficiency exceed those of silicon solar cells and are expected to gradually replace silicon solar cells in the market.
Style APA, Harvard, Vancouver, ISO itp.
50

Albrasia, Enteisar, i Fathia Mohhammed Essa Albrasi. "Solar cells and their use". International Journal of Applied Science and Research 05, nr 05 (2022): 27–33. http://dx.doi.org/10.56293/ijasr.2022.5428.

Pełny tekst źródła
Streszczenie:
The sun's light is an unewable, renewable source of energy that is unaffected by environmental factors like noise and pollution. It is easily obtainable from the Earth's petroleum resources, natural gas, and other nonrenewable energy sources like coal. There were several stages of evolution in the composition of solar cells from one generation to the next. The silicon used in the early solar cells was largely produced as single crystals on silicon chips. Furthermore, advances in thin films the dye and organic solar cells improved the cell's efficiency. The inability to choose the best solar cell for a particular place is essentially what prevents advancement
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii