Artykuły w czasopismach na temat „Solar Cells - Semiconductor Nanocrystals”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Solar Cells - Semiconductor Nanocrystals”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Milliron, Delia J., Ilan Gur i A. Paul Alivisatos. "Hybrid Organic–Nanocrystal Solar Cells". MRS Bulletin 30, nr 1 (styczeń 2005): 41–44. http://dx.doi.org/10.1557/mrs2005.8.
Pełny tekst źródłaEtgar, Lioz. "Semiconductor Nanocrystals as Light Harvesters in Solar Cells". Materials 6, nr 2 (4.02.2013): 445–59. http://dx.doi.org/10.3390/ma6020445.
Pełny tekst źródłaGovindraju, S., N. Ntholeng, K. Ranganathan, M. J. Moloto, L. M. Sikhwivhilu i N. Moloto. "The Effect of Structural Properties of Cu2Se/Polyvinylcarbazole Nanocomposites on the Performance of Hybrid Solar Cells". Journal of Nanomaterials 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/9592189.
Pełny tekst źródłaKamat, Prashant V. "Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters". Journal of Physical Chemistry C 112, nr 48 (18.10.2008): 18737–53. http://dx.doi.org/10.1021/jp806791s.
Pełny tekst źródłaVigil, Elena. "Nanostructured Solar Cells". Key Engineering Materials 444 (lipiec 2010): 229–54. http://dx.doi.org/10.4028/www.scientific.net/kem.444.229.
Pełny tekst źródłaHoang, Son, Ahsan Ashraf, Matthew D. Eisaman, Dmytro Nykypanchuk i Chang-Yong Nam. "Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: energy transfer vs. optical coupling effects". Nanoscale 8, nr 11 (2016): 5873–83. http://dx.doi.org/10.1039/c5nr07932b.
Pełny tekst źródłaAbulikemu, Mutalifu, Silvano Del Gobbo, Dalaver H. Anjum, Mohammad Azad Malik i Osman M. Bakr. "Colloidal Sb2S3nanocrystals: synthesis, characterization and fabrication of solid-state semiconductor sensitized solar cells". Journal of Materials Chemistry A 4, nr 18 (2016): 6809–14. http://dx.doi.org/10.1039/c5ta09546h.
Pełny tekst źródłaSvrcek, Vladimir. "(Invited) Atmospheric Plasmas Synthesized Nanocrystals with Quantum Confinement and Quantum Hybrids in Photovoltaics". ECS Meeting Abstracts MA2022-02, nr 19 (9.10.2022): 889. http://dx.doi.org/10.1149/ma2022-0219889mtgabs.
Pełny tekst źródłaChoi, Seong Jae, Dong Kee Yi, Jae-Young Choi, Jong-Bong Park, In-Yong Song, Eunjoo Jang, Joo In Lee i in. "Spatial Control of Quantum Sized Nanocrystal Arrays onto Silicon Wafers". Journal of Nanoscience and Nanotechnology 7, nr 12 (1.12.2007): 4285–93. http://dx.doi.org/10.1166/jnn.2007.884.
Pełny tekst źródłaYalin, Brandon, Andreas C. Liapis, Matthew D. Eisaman, Dmytro Nykypanchuk i Chang-Yong Nam. "Optical simulation of ultimate performance enhancement in ultrathin Si solar cells by semiconductor nanocrystal energy transfer sensitization". Nanoscale Advances 3, nr 4 (2021): 991–96. http://dx.doi.org/10.1039/d0na00835d.
Pełny tekst źródłaKershaw, Stephen V., Lihong Jing, Xiaodan Huang, Mingyuan Gao i Andrey L. Rogach. "Materials aspects of semiconductor nanocrystals for optoelectronic applications". Materials Horizons 4, nr 2 (2017): 155–205. http://dx.doi.org/10.1039/c6mh00469e.
Pełny tekst źródłaWang, Ying. "Luminescent CdTe and CdSe Semiconductor Nanocrystals: Preparation, Optical Properties and Applications". Journal of Nanoscience and Nanotechnology 8, nr 3 (1.03.2008): 1068–91. http://dx.doi.org/10.1166/jnn.2008.18156.
Pełny tekst źródłaMeng, Lingju, i Xihua Wang. "Doping Colloidal Quantum Dot Materials and Devices for Photovoltaics". Energies 15, nr 7 (27.03.2022): 2458. http://dx.doi.org/10.3390/en15072458.
Pełny tekst źródłaYu, Buyang, Chunfeng Zhang, Lan Chen, Zhengyuan Qin, Xinyu Huang, Xiaoyong Wang i Min Xiao. "Ultrafast dynamics of photoexcited carriers in perovskite semiconductor nanocrystals". Nanophotonics 10, nr 8 (1.06.2020): 1943–65. http://dx.doi.org/10.1515/nanoph-2020-0681.
Pełny tekst źródłaLi, Xiaoming, Yufang Li i Haibo Zeng. "Multiexciton Generation in Semiconductor Nanocrystals: A Potential Avenue Toward Efficient Solar Cells". Science of Advanced Materials 5, nr 11 (1.11.2013): 1585–95. http://dx.doi.org/10.1166/sam.2013.1614.
Pełny tekst źródłaGur, Ilan, Neil A. Fromer, Chih-Ping Chen, Antonios G. Kanaras i A. Paul Alivisatos. "Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based on Hyperbranched Semiconductor Nanocrystals". Nano Letters 7, nr 2 (luty 2007): 409–14. http://dx.doi.org/10.1021/nl062660t.
Pełny tekst źródłaBoudjemila L., Aleshin A. N., Malyshkin V. M., Aleshin P. A., Shcherbakov I. P., Petrov V. N. i Terukov E. I. "Electrical and Optical Characteristics of CsPbI-=SUB=-3-=/SUB=- and CsPbBr-=SUB=-3-=/SUB=- Lead Halide Perovskite Nanocrystal Films Deposited on c-Si Solar Cells for Photovoltaic Applications". Physics of the Solid State 64, nr 11 (2022): 1670. http://dx.doi.org/10.21883/pss.2022.11.54189.418.
Pełny tekst źródłaXie, Sihang, Xueqi Li, Yasi Jiang, Rourou Yang, Muyi Fu, Wanwan Li, Yiyang Pan, Donghuan Qin, Wei Xu i Lintao Hou. "Recent Progress in Hybrid Solar Cells Based on Solution-Processed Organic and Semiconductor Nanocrystal: Perspectives on Device Design". Applied Sciences 10, nr 12 (22.06.2020): 4285. http://dx.doi.org/10.3390/app10124285.
Pełny tekst źródłaAntunez, Priscilla D., Jannise J. Buckley i Richard L. Brutchey. "Tin and germanium monochalcogenide IV–VI semiconductor nanocrystals for use in solar cells". Nanoscale 3, nr 6 (2011): 2399. http://dx.doi.org/10.1039/c1nr10084j.
Pełny tekst źródłaGangadhar, Lekshmi, Anusha Kannan i P. K. Praseetha. "Quantum Dot-Sensitized Solar Cells via Integrated Experimental and Modeling Study". Journal of Computational and Theoretical Nanoscience 16, nr 2 (1.02.2019): 436–40. http://dx.doi.org/10.1166/jctn.2019.7746.
Pełny tekst źródłaKovalenko, Maksym V., Loredana Protesescu i Maryna I. Bodnarchuk. "Properties and potential optoelectronic applications of lead halide perovskite nanocrystals". Science 358, nr 6364 (9.11.2017): 745–50. http://dx.doi.org/10.1126/science.aam7093.
Pełny tekst źródłaBang, Jin Ho, i Prashant V. Kamat. "Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals: CdSe and CdTe". ACS Nano 3, nr 6 (12.05.2009): 1467–76. http://dx.doi.org/10.1021/nn900324q.
Pełny tekst źródłaLing, Tao, Ming-Ke Wu, Kai-Yang Niu, Jing Yang, Zhi-Ming Gao, Jing Sun i Xi-Wen Du. "Spongy structure of CdS nanocrystals decorated with dye molecules for semiconductor sensitized solar cells". Journal of Materials Chemistry 21, nr 9 (2011): 2883. http://dx.doi.org/10.1039/c0jm03530k.
Pełny tekst źródłaBeard, Matthew C., Justin C. Johnson, Joseph M. Luther i Arthur J. Nozik. "Multiple exciton generation in quantum dots versus singlet fission in molecular chromophores for solar photon conversion". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, nr 2044 (28.06.2015): 20140412. http://dx.doi.org/10.1098/rsta.2014.0412.
Pełny tekst źródłaTong, Zhouyu, Mingxuan Bu, Yiqiang Zhang, Deren Yang i Xiaodong Pi. "Hyperdoped silicon: Processing, properties, and devices". Journal of Semiconductors 43, nr 9 (1.09.2022): 093101. http://dx.doi.org/10.1088/1674-4926/43/9/093101.
Pełny tekst źródłaБуджемила, Л., А. Н. Алешин, В. Г. Малышкин, П. А. Алешин, И. П. Щербаков, В. Н. Петров i Е. И. Теруков. "Электрические и оптические характеристики пленок нанокристаллов перовскитов галогенида свинца CsPbI-=SUB=-3-=/SUB=- и CsPbBr-=SUB=-3-=/SUB=-, нанесенных на c-Si солнечные элементы для фотовольтаических приложений". Физика твердого тела 64, nr 11 (2022): 1695. http://dx.doi.org/10.21883/ftt.2022.11.53322.418.
Pełny tekst źródłaNematov, Dilshod. "DFT calculations of the main optical constants of the Cu<sub>2</sub>ZnSnSe<sub>x</sub>S<sub>4-x</sub> system as high-efficiency potential candidates for solar cells". International Journal of Applied Power Engineering (IJAPE) 11, nr 4 (1.12.2022): 287. http://dx.doi.org/10.11591/ijape.v11.i4.pp287-293.
Pełny tekst źródłaCortés-Villena, Alejandro, i Raquel E. Galian. "Present and Perspectives of Photoactive Porous Composites Based on Semiconductor Nanocrystals and Metal-Organic Frameworks". Molecules 26, nr 18 (16.09.2021): 5620. http://dx.doi.org/10.3390/molecules26185620.
Pełny tekst źródłavan Sark, W. G. J. H. M., A. Meijerink, R. E. I. Schropp, J. A. M. van Roosmalen i E. H. Lysen. "Modeling improvement of spectral response of solar cells by deployment of spectral converters containing semiconductor nanocrystals". Semiconductors 38, nr 8 (sierpień 2004): 962–69. http://dx.doi.org/10.1134/1.1787120.
Pełny tekst źródłaAbdel-Salam, A. I., M. Mohsen Abdelaziz, A. N. Emam, A. S. Mansour, A. A. F. Zikry, M. B. Mohamed i Y. H. Elbashar. "Anisotropic CuInSe2 nanocrystals: synthesis, optical properties and their effect on photoelectric response of dye-sensitized solar cell". Revista Mexicana de Física 66, nr 1 (28.12.2019): 14. http://dx.doi.org/10.31349/revmexfis.66.14.
Pełny tekst źródłaVafaei, Saeid, Kazuhiro Manseki, Soki Horita, Masaki Matsui i Takashi Sugiura. "Controlled Assembly of Nanorod TiO2 Crystals via a Sintering Process: Photoanode Properties in Dye-Sensitized Solar Cells". International Journal of Photoenergy 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/7686053.
Pełny tekst źródłaXiao, Kening, Qichuan Huang, Jia Luo, Huansong Tang, Ao Xu, Pu Wang, Hao Ren, Donghuan Qin, Wei Xu i Dan Wang. "Efficient Nanocrystal Photovoltaics via Blade Coating Active Layer". Nanomaterials 11, nr 6 (9.06.2021): 1522. http://dx.doi.org/10.3390/nano11061522.
Pełny tekst źródłaZhang, Liang Min. "Inorganic-Organic Hybrid Nanocomposites for Photovoltaic Applications". Advanced Materials Research 571 (wrzesień 2012): 120–24. http://dx.doi.org/10.4028/www.scientific.net/amr.571.120.
Pełny tekst źródłaZheng, Xinfeng, Yufeng Liu, Yan Sun, Qianqian Li, Ruoyu Zhang, Jingshan Hou, Na Zhang, Guoying Zhao, Yongzheng Fang i Ning Dai. "Bandgap engineering of Cu2Sn(S,Se)3 semiconductor nanocrystals and their applications in thin film solar cells". Journal of Alloys and Compounds 728 (grudzień 2017): 322–27. http://dx.doi.org/10.1016/j.jallcom.2017.09.029.
Pełny tekst źródłaZhao, Lei, i Zhiqun Lin. "Hybrid Solar Cells: Crafting Semiconductor Organic−Inorganic Nanocomposites via Placing Conjugated Polymers in Intimate Contact with Nanocrystals for Hybrid Solar Cells (Adv. Mater. 32/2012)". Advanced Materials 24, nr 32 (13.08.2012): 4346. http://dx.doi.org/10.1002/adma.201290194.
Pełny tekst źródłaHou, Mingyue, Zhaohua Zhou, Ao Xu, Kening Xiao, Jiakun Li, Donghuan Qin, Wei Xu i Lintao Hou. "Synthesis of Group II-VI Semiconductor Nanocrystals via Phosphine Free Method and Their Application in Solution Processed Photovoltaic Devices". Nanomaterials 11, nr 8 (15.08.2021): 2071. http://dx.doi.org/10.3390/nano11082071.
Pełny tekst źródłaDzhagan, Volodymyr, Olga Kapush, Nazar Mazur, Yevhenii Havryliuk, Mykola I. Danylenko, Serhiy Budzulyak, Volodymyr Yukhymchuk, Mykhailo Valakh, Alexander P. Litvinchuk i Dietrich R. T. Zahn. "Colloidal Cu-Zn-Sn-Te Nanocrystals: Aqueous Synthesis and Raman Spectroscopy Study". Nanomaterials 11, nr 11 (31.10.2021): 2923. http://dx.doi.org/10.3390/nano11112923.
Pełny tekst źródłaDasgupta, Uttiya, Sudip K. Saha i Amlan J. Pal. "Plasmonic effect in pn-junction solar cells based on layers of semiconductor nanocrystals: Where to introduce metal nanoparticles?" Solar Energy Materials and Solar Cells 136 (maj 2015): 106–12. http://dx.doi.org/10.1016/j.solmat.2015.01.004.
Pełny tekst źródłaShao, Shuyan, Fengmin Liu, Zhiyuan Xie i Lixiang Wang. "High-Efficiency Hybrid Polymer Solar Cells with Inorganic P- and N-Type Semiconductor Nanocrystals to Collect Photogenerated Charges". Journal of Physical Chemistry C 114, nr 19 (22.04.2010): 9161–66. http://dx.doi.org/10.1021/jp1013169.
Pełny tekst źródłaZhao, Lei, i Zhiqun Lin. "Crafting Semiconductor Organic−Inorganic Nanocomposites via Placing Conjugated Polymers in Intimate Contact with Nanocrystals for Hybrid Solar Cells". Advanced Materials 24, nr 32 (3.07.2012): 4353–68. http://dx.doi.org/10.1002/adma.201201196.
Pełny tekst źródłaSong, Jing, Xiaoxia Xu, Jihuai Wu i Zhang Lan. "Low-temperature solution-processing high quality Nb-doped SnO2 nanocrystals-based electron transport layers for efficient planar perovskite solar cells". Functional Materials Letters 12, nr 01 (21.01.2019): 1850091. http://dx.doi.org/10.1142/s1793604718500911.
Pełny tekst źródłaAbdu-Aguye, Mustapha, Loredana Protesescu, Dmitry N. Dirin, Maksym V. Kovalenko i Maria Antonietta Loi. "The effect of PbS nanocrystal additives on the charge transfer state recombination in a bulk heterojunction blend". Organic Photonics and Photovoltaics 6, nr 1 (1.04.2018): 1–7. http://dx.doi.org/10.1515/oph-2018-0001.
Pełny tekst źródłaWang, Xiaoqian, Wanli Liu, Jiazhen He, Yuqing Li i Yong Liu. "Synthesis of All-Inorganic Halide Perovskite Nanocrystals for Potential Photoelectric Catalysis Applications". Catalysts 13, nr 7 (27.06.2023): 1041. http://dx.doi.org/10.3390/catal13071041.
Pełny tekst źródłaVelázquez-Martínez, S., S. Silva-Martínez, A. E. Jiménez-González i A. Maldonado Álvarez. "Synthesis of Mesoporous TiO2 Spheres via the Solvothermal Process and Its Application in the Development of DSSC". Advances in Materials Science and Engineering 2019 (2.09.2019): 1–15. http://dx.doi.org/10.1155/2019/9504198.
Pełny tekst źródłaKalytchuk, Sergii, Shuchi Gupta, Olga Zhovtiuk, Aleksandar Vaneski, Stephen V. Kershaw, Huiying Fu, Zhiyong Fan i in. "Semiconductor Nanocrystals as Luminescent Down-Shifting Layers To Enhance the Efficiency of Thin-Film CdTe/CdS and Crystalline Si Solar Cells". Journal of Physical Chemistry C 118, nr 30 (17.01.2014): 16393–400. http://dx.doi.org/10.1021/jp410279z.
Pełny tekst źródłaMohamed, Walied A. A., Hala Abd El-Gawad, Saleh Mekkey, Hoda Galal, Hala Handal, Hanan Mousa i Ammar Labib. "Quantum dots synthetization and future prospect applications". Nanotechnology Reviews 10, nr 1 (1.01.2021): 1926–40. http://dx.doi.org/10.1515/ntrev-2021-0118.
Pełny tekst źródłaTahara, Hirokazu, i Yoshihiko Kanemitsu. "(Invited, Digital Presentation) Photocurrent Detection of Cooperative Exciton Quantum Interference in Nanocrystal Thin Films". ECS Meeting Abstracts MA2022-02, nr 20 (9.10.2022): 922. http://dx.doi.org/10.1149/ma2022-0220922mtgabs.
Pełny tekst źródłaDilshod, Nematov, Kholmurodov Kholmirzo, Stanchik Aliona, Fayzullaev Kahramon, Gnatovskaya Viktoriya i Kudzoev Tamerlan. "On the Optical Properties of the Cu2ZnSn[S1−xSex]4 System in the IR Range". Trends in Sciences 20, nr 2 (29.11.2022): 4058. http://dx.doi.org/10.48048/tis.2023.4058.
Pełny tekst źródłaMenezes, Shalini, Anura P. Samantilleke, Sharmila J. Menezes, Yi Mo i David S. Albin. "Electrodeposition of poly and nanocrystalline Cu-In-Se absorbers for optoelectronic devices". MRS Advances 4, nr 37 (2019): 2043–52. http://dx.doi.org/10.1557/adv.2019.319.
Pełny tekst źródłaChawla, Parul, Son Singh i Shailesh Narain Sharma. "An insight into the mechanism of charge-transfer of hybrid polymer:ternary/quaternary chalcopyrite colloidal nanocrystals". Beilstein Journal of Nanotechnology 5 (8.08.2014): 1235–44. http://dx.doi.org/10.3762/bjnano.5.137.
Pełny tekst źródła