Gotowa bibliografia na temat „Solar Cells - Semiconductor Nanocrystals”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Solar Cells - Semiconductor Nanocrystals”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Solar Cells - Semiconductor Nanocrystals"
Milliron, Delia J., Ilan Gur i A. Paul Alivisatos. "Hybrid Organic–Nanocrystal Solar Cells". MRS Bulletin 30, nr 1 (styczeń 2005): 41–44. http://dx.doi.org/10.1557/mrs2005.8.
Pełny tekst źródłaEtgar, Lioz. "Semiconductor Nanocrystals as Light Harvesters in Solar Cells". Materials 6, nr 2 (4.02.2013): 445–59. http://dx.doi.org/10.3390/ma6020445.
Pełny tekst źródłaGovindraju, S., N. Ntholeng, K. Ranganathan, M. J. Moloto, L. M. Sikhwivhilu i N. Moloto. "The Effect of Structural Properties of Cu2Se/Polyvinylcarbazole Nanocomposites on the Performance of Hybrid Solar Cells". Journal of Nanomaterials 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/9592189.
Pełny tekst źródłaKamat, Prashant V. "Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters". Journal of Physical Chemistry C 112, nr 48 (18.10.2008): 18737–53. http://dx.doi.org/10.1021/jp806791s.
Pełny tekst źródłaVigil, Elena. "Nanostructured Solar Cells". Key Engineering Materials 444 (lipiec 2010): 229–54. http://dx.doi.org/10.4028/www.scientific.net/kem.444.229.
Pełny tekst źródłaHoang, Son, Ahsan Ashraf, Matthew D. Eisaman, Dmytro Nykypanchuk i Chang-Yong Nam. "Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: energy transfer vs. optical coupling effects". Nanoscale 8, nr 11 (2016): 5873–83. http://dx.doi.org/10.1039/c5nr07932b.
Pełny tekst źródłaAbulikemu, Mutalifu, Silvano Del Gobbo, Dalaver H. Anjum, Mohammad Azad Malik i Osman M. Bakr. "Colloidal Sb2S3nanocrystals: synthesis, characterization and fabrication of solid-state semiconductor sensitized solar cells". Journal of Materials Chemistry A 4, nr 18 (2016): 6809–14. http://dx.doi.org/10.1039/c5ta09546h.
Pełny tekst źródłaSvrcek, Vladimir. "(Invited) Atmospheric Plasmas Synthesized Nanocrystals with Quantum Confinement and Quantum Hybrids in Photovoltaics". ECS Meeting Abstracts MA2022-02, nr 19 (9.10.2022): 889. http://dx.doi.org/10.1149/ma2022-0219889mtgabs.
Pełny tekst źródłaChoi, Seong Jae, Dong Kee Yi, Jae-Young Choi, Jong-Bong Park, In-Yong Song, Eunjoo Jang, Joo In Lee i in. "Spatial Control of Quantum Sized Nanocrystal Arrays onto Silicon Wafers". Journal of Nanoscience and Nanotechnology 7, nr 12 (1.12.2007): 4285–93. http://dx.doi.org/10.1166/jnn.2007.884.
Pełny tekst źródłaYalin, Brandon, Andreas C. Liapis, Matthew D. Eisaman, Dmytro Nykypanchuk i Chang-Yong Nam. "Optical simulation of ultimate performance enhancement in ultrathin Si solar cells by semiconductor nanocrystal energy transfer sensitization". Nanoscale Advances 3, nr 4 (2021): 991–96. http://dx.doi.org/10.1039/d0na00835d.
Pełny tekst źródłaRozprawy doktorskie na temat "Solar Cells - Semiconductor Nanocrystals"
Yuan, Chunze. "The Study of II-VI Semiconductor Nanocrystals Sensitized Solar Cells". Licentiate thesis, KTH, Teoretisk kemi och biologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93752.
Pełny tekst źródłaQC 20120425
Razgoniaeva, Natalia Razgoniaeva. "Photochemical energy conversion in metal-semiconductor hybrid nanocrystals". Bowling Green State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1465822519.
Pełny tekst źródłaCattley, Christopher Andrew. "Quaternary nanocrystal solar cells". Thesis, University of Oxford, 2016. http://ora.ox.ac.uk/objects/uuid:977e0f75-e597-4c7a-8f72-6a26031f8f0b.
Pełny tekst źródłaNemitz, Ian R. "Synthesis of Nanoscale Semiconductor Heterostructures for Photovoltaic Applications". Bowling Green State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1277087935.
Pełny tekst źródłaLi, Guangru. "Nanostructured materials for optoelectronic devices". Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/263671.
Pełny tekst źródłaWong, Henry Mo Pun. "Semiconducting nanocrystals for hybrid solar cells". Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613367.
Pełny tekst źródłaEhrler, Bruno. "Nanocrystalline solar cells". Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607785.
Pełny tekst źródłaSchnabel, Manuel. "Silicon nanocrystals embedded in silicon carbide for tandem solar cell applications". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:da5bbb64-0bcd-4807-a9f3-4ff63a9ca98d.
Pełny tekst źródłaKinder, Erich W. "Fabrication of All-Inorganic Optoelectronic Devices Using Matrix Encapsulation of Nanocrystal Arrays". Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1339719904.
Pełny tekst źródłaMarín, Beloqui José Manuel. "Solution processed inorganic semiconductor solar cells". Doctoral thesis, Universitat Rovira i Virgili, 2015. http://hdl.handle.net/10803/334407.
Pełny tekst źródłaEn esta tesis, el estudio optoelectrónico y la fabricación de diferentes solución de procesado de semiconductores inorgánicos tales como PbS Quantum Dots y células solares de perovskita se han fabricado. A lo largo de esta tesis medidas optoelectrónicos como fotoinducidas carga Extracción (PICE), fotoinducidas transitoria fotovoltaje (PIT-PV), fotoinducidas transitoria fotocorriente (PIT-PC) Laser transitoria Espectroscopia de Absorción (L-TAS) se han realizado a las células solares eficientes con el fin de estudiar los diferentes procesos eléctricos internos presentes en el dispositivo bajo condiciones de trabajo. Usando estas técnicas, el desdoblamiento de los niveles de Fermi ha sido encontrado como el origen de la tensión en PbS QD células solares (Capítulo 2). Además, en el capítulo 4.1 de un estudio optoelectrónico intensiva se ha realizado a las células solares perovskita mesoporosos, donde se descubrieron decaimientos biexponenciales de TPV y carga diferencial se propuso manera tan adecuada para obtener la carga generada en el dispositivo. Por otra parte, los dispositivos fueron fabricados utilizando diferentes polímeros como HTM, y los resultados proporcionados confirmaron que la regeneración fue superior al 90%, y que PIT-PV realizado en condiciones de oscuridad corresponden a la recombinación entre los huecos de la HTM y los electrones en el TiO2, como presentado en el capítulo 4.2. También, los resultados presentados en el capítulo 4.3 mostraron que una capa de Al2O3 monoatómico ralentiza la recombinación en el dispositivo de aumento de la tensión del dispositivo.
In this thesis, the optoelectronic study and fabrication of different solution processed inorganic semiconductor such as PbS Quantum Dots and perovskite solar cells have been fabricated. Along this thesis optoelectronic measurements such as PhotoInduced Charge Extraction (PICE), PhotoInduced Transient PhotoVoltage (PIT-PV), PhotoInduced Transient PhotoCurrent (PIT-PC) Laser Transient Absorption Spectroscopy (L-TAS) have been performed to efficient solar cells in order to study the different inner electrical processes present in the device under working conditions. Using these techniques, the splitting of Fermi levels have found to be the origin of the voltage in PbS QD solar cells (Chapter 2). Besides, in chapter 4.1 an intensive optoelectronic study has been performed to mesoporous perovskite solar cells, where biexponential decays of TPV were discovered and Differential Charging was proposed as suitable way to obtain the charge generated in the device. Moreover, devices were fabricated using different polymers as HTM, and results provided confirmed that the regeneration was over 90%, and that PIT-PV performed in dark conditions correspond to the recombination between the holes in the HTM and the electrons in the TiO2, as presented in chapter 4.2. Also, results presented in chapter 4.3 showed that a monoatomic layer of Al2O3 slow down the recombination in the device increasing the device voltage..
Książki na temat "Solar Cells - Semiconductor Nanocrystals"
Meeting, Materials Research Society, i Symposium A, "Amorphous and Polycrystalline Thin-Film Silicon Science and Technology" (2009 : San Francisco, Calif.)., red. Amorphous and polycrystalline thin-film silicon science and technology--2009: Symposium held April 14-17, 2009, San Francisco, California, U.S.A. / editors, A. Flewitt ... [et al.]. Warrendale, Pa: Materials Research Society, 2009.
Znajdź pełny tekst źródłaMeeting, Materials Research Society, i Symposium A, "Amorphous and Polycrystalline Thin-Film Silicon Science and Technology" (2010 : San Francisco, Calif.)., red. Amorphous and polycrystalline thin-film silicon science and technology--2010: Symposium held April 5-9, 2009, San Francisco, California / editors, Qi Wang ... [et al.]. Warrendale, Pa: Materials Research Society, 2010.
Znajdź pełny tekst źródłaBorchert, Holger. Solar Cells Based on Colloidal Nanocrystals. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04388-3.
Pełny tekst źródłaParanthaman, M. Parans, Winnie Wong-Ng i Raghu N. Bhattacharya, red. Semiconductor Materials for Solar Photovoltaic Cells. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20331-7.
Pełny tekst źródłaMazer, Jeffrey A. Solar cells: An introduction to crystalline photovoltaic technology. Boston: Kluwer Academic Publishers, 1996.
Znajdź pełny tekst źródłaLuque, Antonio, i Alexander Virgil Mellor. Photon Absorption Models in Nanostructured Semiconductor Solar Cells and Devices. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14538-9.
Pełny tekst źródłaS, Licht, red. Semiconductor electrodes and photoelectrochemistry. Weinheim: Wiley-VCH, 2002.
Znajdź pełny tekst źródłaNational Renewable Energy Laboratory (U.S.) i IEEE Photovoltaic Specialists Conference (37th : 2011 : Seattle, Wash.), red. Carrier density and compensation in semiconductors with multi dopants and multi transition energy levels: The case of Cu impurity in CdTe : preprint. Golden, CO]: National Renewable Energy Laboratory, 2011.
Znajdź pełny tekst źródłaStrikha, V. I. Solnechnye ėlementy na osnove kontakta metall-poluprovodnik. Sankt-Peterburg: Ėnergoatomizdat, Sankt-Peterburgskoe otd-nie, 1992.
Znajdź pełny tekst źródłaA, Steiner Myles, Kanevce Ana, National Renewable Energy Laboratory (U.S.) i IEEE Photovoltaic Specialists Conference (37th : 2011 : Seattle, Wash.), red. Using measurements of fill factor at high irradiance to deduce heterobarrier band offsets: Preprint. Golden, CO]: National Renewable Energy Laboratory, 2011.
Znajdź pełny tekst źródłaCzęści książek na temat "Solar Cells - Semiconductor Nanocrystals"
Borchert, Holger. "Physics and Chemistry of Colloidal Semiconductor Nanocrystals". W Solar Cells Based on Colloidal Nanocrystals, 15–38. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04388-3_2.
Pełny tekst źródłaPatil, Padmashri. "Thermal Sintering Improves the Short Circuit Current of Solar Cells Sensitized with CdTe/CdSe Core/Shell Nanocrystals". W Physics of Semiconductor Devices, 343–46. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_86.
Pełny tekst źródłaBöer, Karl W. "Solar Cells". W Survey of Semiconductor Physics, 1119–70. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2912-1_34.
Pełny tekst źródłaZhang, Chunfu, Jincheng Zhang, Xiaohua Ma i Qian Feng. "Organic Solar Cells". W Semiconductor Photovoltaic Cells, 373–432. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9480-9_9.
Pełny tekst źródłaZhang, Chunfu, Jincheng Zhang, Xiaohua Ma i Qian Feng. "CdTe Solar Cells". W Semiconductor Photovoltaic Cells, 293–324. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9480-9_7.
Pełny tekst źródłaGoodnick, Stephen M., i Christiana Honsberg. "Solar Cells". W Springer Handbook of Semiconductor Devices, 699–745. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-79827-7_19.
Pełny tekst źródłaWinnacker, Albrecht. "Solar Cells". W The Physics Behind Semiconductor Technology, 143–58. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10314-8_10.
Pełny tekst źródłaMertens, R. "Crystalline Silicon Solar Cells". W Semiconductor Silicon, 339–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-74723-6_27.
Pełny tekst źródłaZhang, Chunfu, Jincheng Zhang, Xiaohua Ma i Qian Feng. "Solar Cell Foundation". W Semiconductor Photovoltaic Cells, 23–63. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9480-9_2.
Pełny tekst źródłaConibeer, Gavin. "Applications of Si Nanocrystals in Photovoltaic Solar Cells". W Silicon Nanocrystals, 555–82. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629954.ch20.
Pełny tekst źródłaStreszczenia konferencji na temat "Solar Cells - Semiconductor Nanocrystals"
Chang, Haixin, Xiaojun Lv, Zijian Zheng i Hongkai Wu. "Bioinspired solar water splitting, sensitized solar cells, and ultraviolet sensor based on semiconductor nanocrystal antenna/graphene nanoassemblies". W Photonics and Optoelectronics Meetings 2011, redaktorzy Erich Kasper, Jinzhong Yu, Xun Li, Xinliang Zhang, Jinsong Xia, Junhao Chu, Zhijiang Dong, Bin Hu i Yan Shen. SPIE, 2011. http://dx.doi.org/10.1117/12.915649.
Pełny tekst źródłaKang, Ki Moon, Hyo-Won Kim, Il-Wun Shim i Ho-Young Kwak. "Syntheses of Specialty Nanomaterials at the Multibubble Sonoluminescence Condition". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68320.
Pełny tekst źródłaLiu, Chin-Yi, i Uwe R. Kortshagen. "Hybrid Solar Cells From Silicon Nanocrystals and Conductive Polymers". W ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90322.
Pełny tekst źródłaBogdanovic, Elena, Ludmila Bakueva, Lukasz Brzozowski, Ivan Gorelikov, Nikita Reznik, Daniel J. Dumont i J. A. Rowlands. "Luminescence investigation of endothelial cells using metallic and semiconductor nanocrystals". W Photonics North 2005, redaktorzy Warren C. W. Chan, Kui Yu, Ulrich J. Krull, Richard I. Hornsey, Brian C. Wilson i Robert A. Weersink. SPIE, 2005. http://dx.doi.org/10.1117/12.628234.
Pełny tekst źródłaWang, Wentao, Fude Liu, Chor Man Lau, Lei Wang, Guandong Yang, Dawei Zheng i Zhigang Li. "Field-effect ferroelectric-semiconductor solar cells". W 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). IEEE, 2014. http://dx.doi.org/10.1109/pvsc.2014.6925448.
Pełny tekst źródłaKatsube, Ryoji, Kenji Kazumi i Yoshitaro Nose. "Ternary phosphide semiconductor in solar cells". W 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC). IEEE, 2017. http://dx.doi.org/10.1109/pvsc.2017.8366757.
Pełny tekst źródłaYoon, W., E. E. Foos, M. P. Lumb i J. G. Tischler. "Solution processing of CdTe nanocrystals for thin-film solar cells". W 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC). IEEE, 2012. http://dx.doi.org/10.1109/pvsc.2012.6318132.
Pełny tekst źródłaKakherskyi, Stanislav, Oleksandr Dobrozhan, Roman Pshenychnyi, Denys Kurbatov i Nadia Opanasyuk. "Cu2ZnSnS4, Cu2ZnSnSe4 Nanocrystals As Absorbers In 3rd Generation Solar Cells". W 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2020. http://dx.doi.org/10.1109/elnano50318.2020.9088772.
Pełny tekst źródłaKakherskyi, Stanislav, Oleksandr Dobrozhan, Roman Pshenychnyi, Denys Kurbatov i Nadia Opanasyuk. "Cu2ZnSnS4, Cu2ZnSnSe4 Nanocrystals As Absorbers In 3rd Generation Solar Cells". W 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2020. http://dx.doi.org/10.1109/elnano50318.2020.9088910.
Pełny tekst źródłaCogan, Nicole M. B., Cunming Liu, Fen Qiu, Rebeckah Burke i Todd D. Krauss. "Ultrafast dynamics of colloidal semiconductor nanocrystals relevant to solar fuels production". W SPIE Defense + Security, redaktor Michael K. Rafailov. SPIE, 2017. http://dx.doi.org/10.1117/12.2262168.
Pełny tekst źródłaRaporty organizacyjne na temat "Solar Cells - Semiconductor Nanocrystals"
Alivisatos, A. P. Hierarchial Junction Solar Cells Based on Hyper-Branched Semiconductor Nanocrystals. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2009. http://dx.doi.org/10.21236/ada585157.
Pełny tekst źródłaKweon, K. Construction of Solar Cells from Colloidal Nanocrystals through Electrophoretic Deposition. Office of Scientific and Technical Information (OSTI), październik 2019. http://dx.doi.org/10.2172/1572619.
Pełny tekst źródłaRedwing, Joan, Tom Mallouk, Theresa Mayer, Elizabeth Dickey i Chris Wronski. High Aspect Ratio Semiconductor Heterojunction Solar Cells. Office of Scientific and Technical Information (OSTI), maj 2013. http://dx.doi.org/10.2172/1350042.
Pełny tekst źródłaGeisz, J. Evaluation of Novel Semiconductor Materials Potentially Useful in Solar Cells: Cooperative Research and Development Final Report, CRADA number CRD-06-00172. Office of Scientific and Technical Information (OSTI), lipiec 2010. http://dx.doi.org/10.2172/985555.
Pełny tekst źródłaGinley, D. S. Thin Film Solar Cells Derived from Sintered Semiconductor Quantum Dots: Cooperative Research and Development Final Report, CRADA number CRD-07-00226. Office of Scientific and Technical Information (OSTI), lipiec 2010. http://dx.doi.org/10.2172/985567.
Pełny tekst źródłaBhushan, M., i J. Meakin. Zn/sub 3/P/sub 2/ as an improved semiconductor for photovoltaic solar cells. Final report, April 1, 1983-March 31, 1984. Office of Scientific and Technical Information (OSTI), marzec 1985. http://dx.doi.org/10.2172/5872206.
Pełny tekst źródła