Artykuły w czasopismach na temat „Solar cells – Materials”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Solar cells – Materials.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Solar cells – Materials”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Lara-Padilla, E., Maximino Avendano-Alejo i L. Castaneda. "Transparent Conducting Oxides: Selected Materials for Thin Film Solar Cells". International Journal of Science and Research (IJSR) 11, nr 7 (5.07.2022): 372–80. http://dx.doi.org/10.21275/sr22628033513.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Mathew, Xavier. "Solar cells and solar energy materials". Solar Energy 80, nr 2 (luty 2006): 141. http://dx.doi.org/10.1016/j.solener.2005.06.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Singh, Surya Prakash, i Ashraful Islam. "Intelligent Materials for Solar Cells". Advances in OptoElectronics 2012 (10.04.2012): 1. http://dx.doi.org/10.1155/2012/919728.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Mellikov, E., D. Meissner, T. Varema, M. Altosaar, M. Kauk, O. Volobujeva, J. Raudoja, K. Timmo i M. Danilson. "Monograin materials for solar cells". Solar Energy Materials and Solar Cells 93, nr 1 (styczeń 2009): 65–68. http://dx.doi.org/10.1016/j.solmat.2008.04.018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Mathew, X. "Solar cells & solar energy materials: Cancun 2003". Solar Energy Materials and Solar Cells 82, nr 1-2 (1.05.2004): 1–2. http://dx.doi.org/10.1016/j.solmat.2004.01.028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

MATHEW, X. "Solar cells & solar energy materials—Cancun 2004". Solar Energy Materials and Solar Cells 90, nr 6 (14.04.2006): 663. http://dx.doi.org/10.1016/j.solmat.2005.04.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Tousif, Md Noumil, Sakib Mohamma, A. A. Ferdous i Md Ashraful Hoque. "Investigation of Different Materials as Buffer Layer in CZTS Solar Cells Using SCAPS". Journal of Clean Energy Technologies 6, nr 4 (lipiec 2018): 293–96. http://dx.doi.org/10.18178/jocet.2018.6.4.477.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Smestad, Greg P., Frederik C. Krebs, Carl M. Lampert, Claes G. Granqvist, K. L. Chopra, Xavier Mathew i Hideyuki Takakura. "Reporting solar cell efficiencies in Solar Energy Materials and Solar Cells". Solar Energy Materials and Solar Cells 92, nr 4 (kwiecień 2008): 371–73. http://dx.doi.org/10.1016/j.solmat.2008.01.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Jung, Hyun Suk, i Nam-Gyu Park. "Solar Cells: Perovskite Solar Cells: From Materials to Devices (Small 1/2015)". Small 11, nr 1 (styczeń 2015): 2. http://dx.doi.org/10.1002/smll.201570002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Smestad, Greg P. "Topical Editors in Solar Energy Materials and Solar Cells". Solar Energy Materials and Solar Cells 92, nr 5 (maj 2008): 521. http://dx.doi.org/10.1016/j.solmat.2008.02.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Smestad, Greg P., Frederik C. Krebs, Claes G. Granqvist, Kasturi L. Chopra, Xavier Mathew, Ivan Gordon i Carl M. Lampert. "Priority publishing in Solar Energy Materials and Solar Cells". Solar Energy Materials and Solar Cells 94, nr 7 (lipiec 2010): 1187–90. http://dx.doi.org/10.1016/j.solmat.2010.03.021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Knobloch, J., i A. Eyer. "Crystalline Silicon Materials and Solar Cells". Materials Science Forum 173-174 (wrzesień 1994): 297–310. http://dx.doi.org/10.4028/www.scientific.net/msf.173-174.297.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Zhang, Yi-Heng, i Yuan Li. "Interface materials for perovskite solar cells". Rare Metals 40, nr 11 (3.06.2021): 2993–3018. http://dx.doi.org/10.1007/s12598-020-01696-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

de Wild, J., A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark i R. E. I. Schropp. "Upconverter solar cells: materials and applications". Energy & Environmental Science 4, nr 12 (2011): 4835. http://dx.doi.org/10.1039/c1ee01659h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Steim, Roland, F. René Kogler i Christoph J. Brabec. "Interface materials for organic solar cells". Journal of Materials Chemistry 20, nr 13 (2010): 2499. http://dx.doi.org/10.1039/b921624c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Hussien, S. A., P. Colter, A. Dip, J. R. Gong, M. U. Erdogan i S. M. Bedair. "Materials aspects of multijunction solar cells". Solar Cells 30, nr 1-4 (maj 1991): 305–11. http://dx.doi.org/10.1016/0379-6787(91)90063-u.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Omarova, Zh. "PERFORMANCE SIMULATION OF ECO-FRIENDLY SOLAR CELLS BASED ONCH3NH3SnI3". Eurasian Physical Technical Journal 19, nr 2 (40) (15.06.2022): 58–64. http://dx.doi.org/10.31489/2022no2/58-64.

Pełny tekst źródła
Streszczenie:
Large-scale deployment of the perovskite photovoltaic technology using such high-performance materials as СH3NH3PbI3may face serious environmental issuesin the future. Implementation of perovskite solar cellbased on Sncouldbe an alternative solution for commercialisation. This paperpresents the results of a theoretical study of a lead-free, environmentally-friendlyphotovoltaic cellusing СH3NH3SnI3as a light-absorbing layer. The characteristics of a photovoltaic cell based on perovskite were modelled using the SCAPS-1D program. Various thicknesses of the absorbing layer were analysed,and an optimised device structure is proposed,demonstratinga high power conversionefficiencyof up to 28% at ambient temperature. The analysis of the thicknesses of the СH3NH3SnI3absorbing layer revealedthat at a thickness of 500 nm, performance is demonstrated with an efficiencyof 27.41 %, a fill factor of 85.92 %, a short circuit current density of 32.60 mA/cm2and an open-circuit voltage of 0.98 V. The obtained numerical results indicate that the СH3NH3SnI3absorbing layer may be a viable replacement forthe standard materials and may form the basis of a highly efficient technology of the environmentally-friendlyperovskite solar cells.
Style APA, Harvard, Vancouver, ISO itp.
18

Liang, Z. C., D. M. Chen, X. Q. Liang, Z. J. Yang, H. Shen i J. Shi. "Crystalline Si solar cells based on solar grade silicon materials". Renewable Energy 35, nr 10 (październik 2010): 2297–300. http://dx.doi.org/10.1016/j.renene.2010.02.027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Mathew, Xavier. "Solar cells and solar energy materials—IMRC 2005, Cancun, Mexico". Solar Energy Materials and Solar Cells 90, nr 15 (wrzesień 2006): 2169. http://dx.doi.org/10.1016/j.solmat.2006.02.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Gatto, Emanuela, Raffaella Lettieri, Luigi Vesce i Mariano Venanzi. "Peptide Materials in Dye Sensitized Solar Cells". Energies 15, nr 15 (3.08.2022): 5632. http://dx.doi.org/10.3390/en15155632.

Pełny tekst źródła
Streszczenie:
In September 2015, the ONU approved the Global Agenda for Sustainable Development, by which all countries of the world are mobilized to adopt a set of goals to be achieved by 2030. Within these goals, the aim of having a responsible production and consumption, as well as taking climate action, made is necessary to design new eco-friendly materials. Another important UN goal is the possibility for all the countries in the world to access affordable energy. The most promising and renewable energy source is solar energy. Current solar cells use non-biodegradable substrates, which generally contribute to environmental pollution at the end of their life cycles. Therefore, the production of green and biodegradable electronic devices is a great challenge, prompted by the need to find sustainable alternatives to the current materials, particularly in the field of dye-sensitized solar cells. Within the green alternatives, biopolymers extracted from biomass, such as polysaccharides and proteins, represent the most promising materials in view of a circular economy perspective. In particular, peptides, due to their stability, good self-assembly properties, and ease of functionalization, may be good candidates for the creation of dye sensitized solar cell (DSSC) technology. This work shows an overview of the use of peptides in DSSC. Peptides, due to their unique self-assembling properties, have been used both as dyes (mimicking natural photosynthesis) and as templating materials for TiO2 morphology. We are just at the beginning of the exploitation of these promising biomolecules, and a great deal of work remains to be done.
Style APA, Harvard, Vancouver, ISO itp.
21

Zhang, Jianjun, Jiajie Fan, Bei Cheng, Jiaguo Yu i Wingkei Ho. "Graphene‐Based Materials in Planar Perovskite Solar Cells". Solar RRL 4, nr 11 (11.09.2020): 2000502. http://dx.doi.org/10.1002/solr.202000502.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Kawabata, Rudy Massami Sakamoto, Edgard Costa, Luciana Pinto, Roberto Jakomin, Mauricio Pires, Daniel Micha i Patricia Lustoza de Souza. "III-V SOLAR CELLS". Journal of Integrated Circuits and Systems 17, nr 2 (17.09.2022): 1–10. http://dx.doi.org/10.29292/jics.v17i2.618.

Pełny tekst źródła
Streszczenie:
In this review article solar cells based on III-V materials are addressed, starting by a brief description of their operation principle, including key materials’ issues. Subsequently, the different types of III-V solar cells are presented, together with their state-of-the-art performance. Various approaches to reduce their costs are then discussed, and an outlook of the research in this field concludes the paper.
Style APA, Harvard, Vancouver, ISO itp.
23

Ji, Ting, Ying-Kui Wang, Lin Feng, Guo-Hui Li, Wen-Yan Wang, Zhan-Feng Li, Yu-Ying Hao i Yan-Xia Cui. "Charge transporting materials for perovskite solar cells". Rare Metals 40, nr 10 (21.05.2021): 2690–711. http://dx.doi.org/10.1007/s12598-021-01723-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Cheng, Chieh, Chia Chih Ho, Chia Tien Wu i Fu Hsiang Ko. "Nanostructural Materials for Dye-Sensitized Solar Cells". Advanced Materials Research 772 (wrzesień 2013): 337–42. http://dx.doi.org/10.4028/www.scientific.net/amr.772.337.

Pełny tekst źródła
Streszczenie:
The self-organized hollow TiO2hemisphere with a height of 130 nm and a diameter of 200 nm was formed. Highly ordered TiO2nanotube arrays of 200-nm pore diameter and 700-nm length were grown perpendicular to a FTO substrate by infiltrating the alumina pores with Ti (OC3H7)4which was subsequently converted into anatase TiO2. The structure was treated with TiCl4to enhance the photogenerated current and then integrated into the DSSC using a commercially available ruthenium-based dye. The dye-sensitized solar cell using self-organized hollow TiO2hemispheres under porous alumina with TiO2nanotubes inside as the working electrode generated a photocurrent of 5.00 mA/cm2, an open-circuit voltage of 0.58 V and yielding a power conversion efficiency 1.77 times the conventional nanoparticle-based DSSC.
Style APA, Harvard, Vancouver, ISO itp.
25

Tang, Guanqi, i Feng Yan. "Flexible perovskite solar cells: Materials and devices". Journal of Semiconductors 42, nr 10 (1.10.2021): 101606. http://dx.doi.org/10.1088/1674-4926/42/10/101606.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Zhao, Fuwen, Jixiang Zhou, Dan He, Chunru Wang i Yuze Lin. "Low-cost materials for organic solar cells". Journal of Materials Chemistry C 9, nr 43 (2021): 15395–406. http://dx.doi.org/10.1039/d1tc04097a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Li, Wangnan, Zhicheng Zhong, Fuzhi Huang, Jie Zhong, Zhiliang Ku, Wei Li, Junyan Xiao, Yong Peng i Yi-Bing Cheng. "Printable materials for printed perovskite solar cells". Flexible and Printed Electronics 5, nr 1 (6.01.2020): 014002. http://dx.doi.org/10.1088/2058-8585/ab56b4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Zhang, Cuiling, Gowri Manohari Arumugam, Chong Liu, Jinlong Hu, Yuzhao Yang, Ruud E. I. Schropp i Yaohua Mai. "Inorganic halide perovskite materials and solar cells". APL Materials 7, nr 12 (1.12.2019): 120702. http://dx.doi.org/10.1063/1.5117306.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Mellikov, E., J. Hiie i M. Altosaar. "Powder materials and technologies for solar cells". International Journal of Materials and Product Technology 28, nr 3/4 (2007): 291. http://dx.doi.org/10.1504/ijmpt.2007.013082.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Di Carlo, Aldo, Antonio Agresti, Francesca Brunetti i Sara Pescetelli. "Two-dimensional materials in perovskite solar cells". Journal of Physics: Energy 2, nr 3 (13.07.2020): 031003. http://dx.doi.org/10.1088/2515-7655/ab9eab.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Mesquita, Isabel, Luísa Andrade i Adélio Mendes. "Perovskite solar cells: Materials, configurations and stability". Renewable and Sustainable Energy Reviews 82 (luty 2018): 2471–89. http://dx.doi.org/10.1016/j.rser.2017.09.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Šály, Vladimír, Vladimír Ďurman, Michal Váry, Milan Perný i František Janíček. "Assessment of encapsulation materials for solar cells". E3S Web of Conferences 61 (2018): 00008. http://dx.doi.org/10.1051/e3sconf/20186100008.

Pełny tekst źródła
Streszczenie:
Interfacial processes were studied in various insulation foils intended for encapsulation of photovoltaic cells. The analysis was based on the dielectric measurements in a broad region of temperatures and frequencies. The measurements showed that the observed processes are connected with the electrode polarization. The electrode polarization gives rise to the space charge formation and enhancement of electric field near the electrodes. Calculation of the electric field is important for praxis as it allows assessing the risk of electrical breakdown. In our work we use the parameters obtained from the dielectric measurements for calculation of electric field distribution in encapsulating materials. It was found that electric field increases more than 100-times comparing with the mean value.
Style APA, Harvard, Vancouver, ISO itp.
33

You, Peng, Guanqi Tang i Feng Yan. "Two-dimensional materials in perovskite solar cells". Materials Today Energy 11 (marzec 2019): 128–58. http://dx.doi.org/10.1016/j.mtener.2018.11.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Guha, Subhendu. "Materials aspects of amorphous silicon solar cells". Current Opinion in Solid State and Materials Science 2, nr 4 (sierpień 1997): 425–29. http://dx.doi.org/10.1016/s1359-0286(97)80083-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Durose, K., P. R. Edwards i D. P. Halliday. "Materials aspects of CdTe/CdS solar cells". Journal of Crystal Growth 197, nr 3 (luty 1999): 733–42. http://dx.doi.org/10.1016/s0022-0248(98)00962-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Scrosati, B. "Semiconductor materials for liquid electrolyte solar cells". Pure and Applied Chemistry 59, nr 9 (1.01.1987): 1173–76. http://dx.doi.org/10.1351/pac198759091173.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Jung, Hyun Suk, i Nam-Gyu Park. "Perovskite Solar Cells: From Materials to Devices". Small 11, nr 1 (30.10.2014): 10–25. http://dx.doi.org/10.1002/smll.201402767.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Lian, Jiarong, Bing Lu, Fangfang Niu, Pengju Zeng i Xiaowei Zhan. "Electron-Transport Materials in Perovskite Solar Cells". Small Methods 2, nr 10 (25.07.2018): 1800082. http://dx.doi.org/10.1002/smtd.201800082.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Lin, Xiao-Feng, Zi-Yan Zhang, Zhong-Ke Yuan, Jing Li, Xiao-Fen Xiao, Wei Hong, Xu-Dong Chen i Ding-Shan Yu. "Graphene-based materials for polymer solar cells". Chinese Chemical Letters 27, nr 8 (sierpień 2016): 1259–70. http://dx.doi.org/10.1016/j.cclet.2016.06.041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Calió, Laura, Samrana Kazim, Michael Grätzel i Shahzada Ahmad. "Hole-Transport Materials for Perovskite Solar Cells". Angewandte Chemie International Edition 55, nr 47 (14.10.2016): 14522–45. http://dx.doi.org/10.1002/anie.201601757.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Liu, Fan, Qianqian Li i Zhen Li. "Hole-Transporting Materials for Perovskite Solar Cells". Asian Journal of Organic Chemistry 7, nr 11 (28.09.2018): 2182–200. http://dx.doi.org/10.1002/ajoc.201800398.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Ma, Dongling. "Solar Energy and Solar Cells". Nanomaterials 11, nr 10 (12.10.2021): 2682. http://dx.doi.org/10.3390/nano11102682.

Pełny tekst źródła
Streszczenie:
Thanks to the helpful discussions and strong support provided by the Publisher and Editorial Staff of Nanomaterials, I was appointed as a section Editor-in-Chief of the newly launched section “Solar Energy and Solar Cells” earlier this year (2021) [...]
Style APA, Harvard, Vancouver, ISO itp.
43

Mathew, Xavier, i Angus Rockett. "Mexican Academy of Materials Science-IMRC 2004, Cancun: Solar cells and solar energy materials". Thin Solid Films 490, nr 2 (listopad 2005): 111. http://dx.doi.org/10.1016/j.tsf.2005.04.055.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Lu, Liufeige. "Optimization of Solar Cells Based on Perovskite Materials". E3S Web of Conferences 358 (2022): 02050. http://dx.doi.org/10.1051/e3sconf/202235802050.

Pełny tekst źródła
Streszczenie:
With the rapid advancement of economy, human’s demand for energy continues to grow, and energy shortage has become the primary problem hindering further economic development. Therefore, changing the existing energy structure and developing and utilizing sustainable clean energy are the research directions of all countries in the world. Perovskite solar cells have rapidly become a research hotspot in the field of solar cells worldwide in recent years due to their remarkable advantages such as low manufacturing cost and high efficiency. However, PSC (Perovskite solar cell) have many problems in the stability, reproducibility and performance evaluation of high-efficiency battery devices. By introducing the structure and performance of perovskite, this paper summarizes the research progress of solar cells based on this kind of materials, analyzes its working mechanism, summarizes the key issues affecting the performance of PSC, points out the direction of efforts to further improve the performance of PSC, and looks forward to the optimization development of PSC.
Style APA, Harvard, Vancouver, ISO itp.
45

Afshar, Elham N., Georgi Xosrovashvili, Rasoul Rouhi i Nima E. Gorji. "Review on the application of nanostructure materials in solar cells". Modern Physics Letters B 29, nr 21 (10.08.2015): 1550118. http://dx.doi.org/10.1142/s0217984915501183.

Pełny tekst źródła
Streszczenie:
In recent years, nanostructure materials have opened a promising route to future of the renewable sources, especially in the solar cells. This paper considers the advantages of nanostructure materials in improving the performance and stability of the solar cell structures. These structures have been employed for various performance/energy conversion enhancement strategies. Here, we have investigated four types of nanostructures applied in solar cells, where all of them are named as quantum solar cells. We have also discussed recent development of quantum dot nanoparticles and carbon nanotubes enabling quantum solar cells to be competitive with the conventional solar cells. Furthermore, the advantages, disadvantages and industrializing challenges of nanostructured solar cells have been investigated.
Style APA, Harvard, Vancouver, ISO itp.
46

Zhu, Rui, Zhongwei Zhang i Yulong Li. "Advanced materials for flexible solar cell applications". Nanotechnology Reviews 8, nr 1 (18.12.2019): 452–58. http://dx.doi.org/10.1515/ntrev-2019-0040.

Pełny tekst źródła
Streszczenie:
Abstract The solar power is one of the most promising renewable energy resources, but the high cost and complicated preparation technology of solar cells become the bottleneck of the wide application in many fields. The most important parameter for solar cells is the conversion efficiency, while at the same time more efficient preparation technologies and flexible structures should also be taken under significant consideration [1]. Especially with the rapid development of wearable devices, people are looking forward to the applications of solar cell technology in various areas of life. In this article the flexible solar cells, which have gained increasing attention in the field of flexibility in recent years, are introduced. The latest progress in flexible solar cells materials and manufacturing technologies is overviewed. The advantages and disadvantages of different manufacturing processes are systematically discussed.
Style APA, Harvard, Vancouver, ISO itp.
47

Loferski, Joseph. "Solar cells". Solar Energy 42, nr 4 (1989): 355–56. http://dx.doi.org/10.1016/0038-092x(89)90040-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Zhou, Di, Tiantian Zhou, Yu Tian, Xiaolong Zhu i Yafang Tu. "Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives". Journal of Nanomaterials 2018 (2018): 1–15. http://dx.doi.org/10.1155/2018/8148072.

Pełny tekst źródła
Streszczenie:
A novel all-solid-state, hybrid solar cell based on organic-inorganic metal halide perovskite (CH3NH3PbX3) materials has attracted great attention from the researchers all over the world and is considered to be one of the top 10 scientific breakthroughs in 2013. The perovskite materials can be used not only as light-absorbing layer, but also as an electron/hole transport layer due to the advantages of its high extinction coefficient, high charge mobility, long carrier lifetime, and long carrier diffusion distance. The photoelectric power conversion efficiency of the perovskite solar cells has increased from 3.8% in 2009 to 22.1% in 2016, making perovskite solar cells the best potential candidate for the new generation of solar cells to replace traditional silicon solar cells in the future. In this paper, we introduce the development and mechanism of perovskite solar cells, describe the specific function of each layer, and focus on the improvement in the function of such layers and its influence on the cell performance. Next, the synthesis methods of the perovskite light-absorbing layer and the performance characteristics are discussed. Finally, the challenges and prospects for the development of perovskite solar cells are also briefly presented.
Style APA, Harvard, Vancouver, ISO itp.
49

Heo, Do Yeon, Ha Huu Do, Sang Hyun Ahn i Soo Young Kim. "Metal-Organic Framework Materials for Perovskite Solar Cells". Polymers 12, nr 9 (10.09.2020): 2061. http://dx.doi.org/10.3390/polym12092061.

Pełny tekst źródła
Streszczenie:
Metal-organic frameworks (MOFs) and MOF-derived materials have been used for several applications, such as hydrogen storage and separation, catalysis, and drug delivery, owing to them having a significantly large surface area and open pore structure. In recent years, MOFs have also been applied to thin-film solar cells, and attractive results have been obtained. In perovskite solar cells (PSCs), the MOF materials are used in the form of an additive for electron and hole transport layers, interlayer, and hybrid perovskite/MOF. MOFs have the potential to be used as a material for obtaining PSCs with high efficiency and stability. In this study, we briefly explain the synthesis of MOFs and the performance of organic and dye-sensitized solar cells with MOFs. Furthermore, we provide a detailed overview on the performance of the most recently reported PSCs using MOFs.
Style APA, Harvard, Vancouver, ISO itp.
50

Smestad, Greg P. "Editorial: Greg P. Smestad and Solar Energy Materials and Solar Cells". Solar Energy Materials and Solar Cells 194 (czerwiec 2019): A1—A3. http://dx.doi.org/10.1016/j.solmat.2018.10.029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii