Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Solar cells- Light absorption.

Rozprawy doktorskie na temat „Solar cells- Light absorption”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Solar cells- Light absorption”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.

1

Yang, Qingyi. "Broadband light absorption enhancement in organic solar cells". HKBU Institutional Repository, 2014. https://repository.hkbu.edu.hk/etd_oa/54.

Pełny tekst źródła
Streszczenie:
The aim of this thesis was to undertake a comprehensive research to study the broadband light absorption enhancement in organic solar cells (OSCs) with different nano-structures, thereby improving short-circuit current density and efficiency. Absorption enhancement in OSCs having different photonic structures, compared to the control planar cell configuration, was analyzed and studied using the optical admittance analysis and finite-difference time-domain (FDTD) method. After a brief overview of the latest progresses made in OSCs, the basic optical principles of light scattering, surface plasmon polaritons (SPPs), localized surface plasmon resonance (LSPR), diffraction effect and waveguide mode, that had been employed for light trapping in OSCs, are discussed. Optical admittance analysis reveals that light absorption in inverted OSCs, based on polymer blend layer of P3HT:PCBM, is always greater than the conventional geometry OSCs fabricated using an ITO/PEDOT:PSS anode. The inverted bulk heterojunction OSCs, made with a pair of an ultrathin Al-modified ITO front cathode and a bi-layer MoO3/Ag anode, exhibited a superior power conversion efficiency (PCE) of 4.16%, which is about 13% more efficient than a control normal OSC. It is shown that the reverse configuration allows improving charge collection at cathode/blend interface and also possessing a dawdling degradation behavior as compared to a control regular OSC in the accelerated aging test. Light absorption enhancement in ZnPc:C60-based OSCs, made with substrates having different structures, for example, surface-modified Ag nanoparticles and 1-D photonic structures, was analyzed. The effect of an ultra-thin plasma-polymerized fluorocarbon film (CFx)-modified Ag nanoparticles ii (NPs)/ITO anode on the performance of OSCs was optimized through theoretical simulation and experimental optimization. This work yielded a promising PCE of 3.5 ± 0.1%, notably higher than that with a bare ITO anode (2.7±0.1%). The work was extended to study the performance of OSCs made with CFx-modified Ag NPs/ITO/polyethylene terephthalate (PET) substrate. The resulting flexible OSCs had a relatively high PCE of 3.1±0.1%, comparable to that of structurally identical OSCs fabricated on ITO-coated glass substrate (PCE of 3.5±0.1%). The distribution of the sizes of the Ag NPs, formed by the thermal evaporation, was over the range from 2.0 nm to 10 nm. The results reveal that the localized surface plasmon resonance, contributing to the broadband light absorption enhancement in the organic photoactive layer, was strongly influenced by the size of Ag NPs and the dielectric constant of the surrounding medium. A new OSC structure incorporating a transparent PMMA/ITO double layer grating electrode was also developed. 1-D PMMA/ITO double layer grating, fabricated using nano-imprinting and low processing temperature ITO sputtering method, has a period of 500 nm. Light absorption in grating OSCs under TM, TE and TM/TE hybrid polarizations was calculated using FDTD simulation in the wavelength range from 400 nm to 800 nm. We profiled the electric field distribution and analyzed the structural requirement for confining the waveguide modes in the organic photoactive layer. The effects of the periodicity and the pitch size on light scattering, simultaneous excitation of horizontally propagating SPPs, LSPR and the waveguide modes for light harvesting in grating OSCs were analyzed. The efficiency enhancement in the grating OSCs (PCE 3.29%) over the planar control device (PCE 2.86%) is primarily due to the increase in the short-circuit current density from 11.93 mA/cm2 to 13.57 mA/cm2 (13.7% enhancement). The theoretical results agree with the experimental findings in showing that the improved performance in grating OSCs is attributed to the absorption enhancement in the active layer
Style APA, Harvard, Vancouver, ISO itp.
2

Fang, Liping. "Enhancing light absorption in silicon solar cells by fluorescent molecules". Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/370511/.

Pełny tekst źródła
Streszczenie:
This project aims to harness photon transport in planar solar converters via fluorescent molecules to enhance light absorption in silicon and hence reduce the material requirements and the cost of crystalline silicon solar cells. To accomplish this aim two approaches has been investigated: concentrating the far field radiation of the excited fluorescent molecules on a small area of silicon solar cell by using a fluorescent solar collector; directly injecting the excitonic energy of the excited fluorescent molecules to the waveguide modes in a proximal thin crystalline silicon solar cell via near field interactions. An analytical model has been developed to characterise photon reabsorption in fluorescent solar collectors. This model is able to predict the spectrum of the incident photon flux on the optically coupled edge solar cell, which is not easy to measure experimentally. In the limit of high reabsorption, a useful simple expression has been found for the reabsorption probability limit, which only depends on the étendue of the photon flux emitted at the edge of the collector, the absorption coefficient of the dye molecule, and the refractive index of the collector matrix. Perceiving the solar cell as a waveguide, the highly oscillating behaviour of the quantum efficiency of a 200 nm thick crystalline silicon solar cell has been linked to the waveguide modes supported by the thin solar cell, by studying the analytical properties of the solar cell absorbance in the complex plain of the wavenumber of light. Efficient energy injection into a 25 nm thick thin crystalline silicon film has been demonstrated by studying molecular fluorescence and energy transfer of a carbocyanine dye deposited as Langmuir-Blodgett monolayers at different distance to the surface of copper, bulk crystalline silicon and 25 nm thick crystalline silicon films. Via the time correlated single photon counting technique, the dependence of fluorescence lifetime on the distance to the 25 nm thick crystalline silicon films has been found to fit quantitatively with an analytical expression for the injection rate of waveguide modes or simply the photon tunnelling rate from an excited molecule to a nearby thin waveguide obtained by a complex variable analysis.
Style APA, Harvard, Vancouver, ISO itp.
3

Lan, Weixia. "Light harvesting and charge collection in bulk heterojunction organic solar cells". HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/318.

Pełny tekst źródła
Streszczenie:
As a clean and non-exhaustible energy source, solar energy is becoming increasingly important in reducing energy prices and influencing the global climate change. Compared to the traditional inorganic solar cells, conjugated polymer-based organic solar cells (OSCs) have shown much promise as an alternative photovoltaic technology for producing solar cells on large scale at low-cost. However, despite the rapid progresses made in the development of new donor materials, fullerene derivatives and hybrid small molecule/polymer blends, the efficiency and stability of OSCs are still limitations on the potential applications. The performance of OSCs is primarily hampered by the limited light absorption, caused by the mismatch between light absorption depth and carrier transport scale, low carrier mobility and unstable electrode/organic interfacial properties. Improved utilization of light in solution-processed OSCs via different light trapping schemes is a promising approach. The feasibility of light trapping using surface plasmonic structures and textured surfaces to confine light more efficiently into OSCs has been demonstrated. However, plasmon excitations are localized only in the vicinity of metal/organic interface, while the absorption enhancement due to the textured surfaces improves light trapping irrespective of the wavelength. A generic approach towards improving light harvesting in the organic active layer thinner than optical absorption length is one of the key strategies to the success of OSCs. The aim of this PhD project is to undertake a comprehensive study to analyze broadband and omnidirectional light absorption enhancement in bulk heterojunction (BHJ) OSCs, to understand the dynamics of charge transport, charge recombination, charge collection, and to develop solutions to improve the stability of OSCs. In this work, the broadband light absorption enhancement in solution-processed BHJ OSCs is realized by incorporating 2-D photonic structures in the active layer, formed using a nano-imprinting method. The performance of photonic-structured OSCs and planar control cells, fabricated with the blend of poly[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-bA] dithiophene-2,6-diyl] [3-fluoro-2-[(2ethylhexyl) carbonyl] thieno[3,4-b]-thiophenediyl] (PTB7): [6,6]-phenyl-C70-butyric-acid-methyl-ester (PC70BM) is analyzed. By introducing the photonic structures with 500 nm structure period, the performance of structured OSCs is optimized by adjusting the structure height in the active layer. With the comparison of the current densityvoltage (JV) characteristics, the incident photon to charge carrier efficiency (IPCE) spectra and also the finite-difference time-domain (FDTD) calculated electric field distributions, our results reveal that the photonic structures allow improving light absorption in PTB7:PC70BM layer, especially in the long wavelength region. It is shown that the photonic-structured OSCs possess a 6.15 % increase in power conversion efficiency (PCE) and a 7.53 % increase in short circuit current density (JSC) compared to that of a compositionally identical planar control cell. Light absorption in the 2-D photonic-structured OSCs is a function of the photonic structures and the optical properties of the active layer. The correlation between the choice of the photonic structures and the enhanced spectral response in photonic-structured OSCs is analysed systematically using theoretical simulation and experimental optimization. It is found that the integrated absorption of the active layer decreases slightly with increase in the period of the photonic structures. The results reveal that the photonic-structured OSCs exhibit a stronger absorption enhancement over a broader range of the angle of incident light. The incorporation of the appropriate periodic nano-structures in the active layer is apparently favourable for efficient cell operation as compared to light absorption in the planar control cells made with the same blend system, which decreases rapidly with an increase in the angle of the incident light. Omnidirectional and broadband light absorption enhancement observed in photonic-structured OSCs agrees well with the theoretical simulation. More than 11% increase in the PCE of photonic-structured OSCs is obtained compared to that of an optimized planar control cell, caused mainly by the absorption enhancement in the active layer. 2-D photonic structures allow achieving broadband absorption enhancement in OSCs over a wider range of the angle of the incident light from -45 deg to +45 deg with respect to the normal to the cell surface. For example, the higher light absorption in the active layer of photonic-structured OSCs, integrated over the visible light wavelength range from 380 nm to 780 nm, changes slightly from 70.1% (normal) to 67.7% (45 deg), remaining 96.6% of the absorption in the cells at the normal incidence. While for the control planar OSC, the integrated absorption follows a faster decrease from 66.2% (normal) to 62.2% (45 deg), revealing a quicker reduction in the absorption of the cells at an angle of the incident light away from the normal incidence. In addition to the absorption enhancement, charge transport, recombination and collection are also prominent factors for the efficient operation of OSCs. Thus, it is crucial to improve the understanding of these important processes and their impacts on the cell performance in order to design optimized device architectures. The charge recombination processes, the distribution of charge density under different operation conditions and charge collection at the organic/electrode interfaces in PTB7:PC70BM-based OSCs are studied systematically using a combination of theoretical calculation, transient photocurrent (TPC) measurements, morphology analyses and device optimization. The charge transport and recombination properties in the BHJ OSCs are investigated using the photo-induced charge extraction by linearly increasing voltage (Photo-CELIV) method. Combined with light intensity-dependent J--V characteristic and TPC measurements, it is shown that the use of the ZnO cathode interlayer has a profound effect on enhancing charge collection efficiency and thereby improving in the overall performance of OSCs. The origin of the improvement in the cell performance is mainly associated with improved electrical properties. The TPC results reveal that the presence of the ZnO interlayer helps to prevent the unfavourable interfacial exciton dissociation for achieving efficient charge collection at the active layer/electrode interface. Light intensity-dependent J--V characteristics and the photo-CELIV results support the findings in showing that the charge recombination at the organic/cathode interface can be effectively suppressed by inserting a thin ZnO cathode interlayer, leading to a significant improvement in the charge collection efficiency. A comprehensive study on the degradation mechanisms of solution-processed BHJ. OSCs has been performed. It is manifested that the suppression in bi-molecular recombination and enhancement in charge mobility, achieved through appropriate electrode modification, is one of the effective approaches for achieving stable and performance reproducible OSCs. The effect of the solution-processed anode interlayer, e.g. a mixture of MoO3 and Au nanoparticles (MoO3:Au NPs), on the performance of BHJ OSCs is also examined, with the aim to replace the acidic and hygroscopic poly(3,4-ethylenedioxylenethiophene): polystyrene sulfonate (PEDOT:PSS) hole extraction layer (HEL). A 14.3% enhancement in the PCE of OSCs with an anode interlayer of MoO3:Au NPs (7.78%) is obtained compared to that of the structurally identical devices with a pristine MoO3-based interlayer (6.72%), due to the simultaneous improvements in both JSC and fill factor (FF). The accelerated aging tests for as-prepared structurally identical OSCs fabricated with different HELs were carried out in the ambient condition. It is shown that the solution-processed MoO3:Au NPs and pristine MoO3 interlayers are superior to the frequently-used PEDOT:PSS HEL for efficient operation over the long-term. PCE of the MoO3-based OSCs maintains about 40% of their initial value, while a catastrophic failure in the control devices with a PEDOT:PSS HEL is observed after the accelerated aging test under the same condition, with a high relative humidity of 90% at room temperature for 180 min. The degradation behavior of different OSCs performed in the accelerated aging test correlates well with light-intensity JV characteristic and TPC measurements. The outcomes of this work help to the creation of device knowledge and process integration technologies for realization of high performance solution-processed OSCs. It is anticipated that the adoption of the affordable organic photovoltaic technology as one of the clean energy sources will contribute to the preservation of the environment.
Style APA, Harvard, Vancouver, ISO itp.
4

Dunbar, Ricky. "Using metallic nanostructures to trap light and enhance absorption in organic solar cells". Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-142241.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ellaboudy, Ashton. "ENHANCEMENT OF LIGHT ABSORPTION EFFICIENCY Of SOLAR CELL USING DUAL". DigitalCommons@CalPoly, 2011. https://digitalcommons.calpoly.edu/theses/672.

Pełny tekst źródła
Streszczenie:
In this research we study the effect of adding a single diffraction grating on top of a solar cell. We simulated the square diffraction grating, as well as triangular diffraction grating. The single square grating showed more favorable results, achieved 330% power improvement compared to 270% power improvement in the single triangular grating case. We simulated a triangle/triangle (top-bottom) and triangular/rectangular (top-bottom) grating cases. The Triangular grating achieved higher light absorption compared to rectangular grating. The best top grating was around 200nm grating period. We realized solar cell efficiency improvement about 42.4% for the triangular rectangular (top-bottom) grating. We studied the light transmitted power in a silicon solar cell using double diffraction triangular nano-grating. We simulated the solar cell behavior as it absorbs sunlight through its structure in various cases, results showed 270% increase of the weighted transmitted power when the top grating period (At) varies from 300nm to 800nm, and the bottom grating period (Ab) is at 500nm. We finally studied the effect of changing the location of the diffraction gratings with respect to the solar cell. We were able to increase the light efficiency by 120%. The study showed that the power absorbed by the solar cell is not sensitive to the grating location.
Style APA, Harvard, Vancouver, ISO itp.
6

Curtin, Benjamin Michael. "Photonic crystal back-reflectors for light management and enhanced absorption in a-Si:H solar cells". [Ames, Iowa : Iowa State University], 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1468075.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Beyer, Beatrice. "Architectural Approaches for the Absorption Layer and their Impact on Organic Solar Cells". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-133594.

Pełny tekst źródła
Streszczenie:
This study focuses on the architectural modification of pin-type small-molecule organic solar cells, in particular on the absorption layer and its influence on the key solar cell parameters, such as short circuit current density, fill factor and open circuit voltage. Three different approaches have been applied to improve the match between the solar spectrum and the spectral sensitivity of organic solar cells. In the first part, deposition parameters such as substrate temperature, gradient strength and (graded) absorption layer thickness are evaluated and compared to organic solar cells with homogeneously deposited absorption layers. Moreover, the gradient-like distribution of the absorption layer is characterized optically and morphological effects have been extensively studied. In order to isolate the origin of the efficiency improvement due to the graded architecture, voltage-dependent spectral response measurements have been performed and gave new insights. The second part concentrates on the efficient in-coupling of converted UV light, which is usually lost because of the cut off properties of organic light in-coupling layers. Via Förster resonance energy transfer, the absorbed UV light is re-emitted as red light and contributes significantly to higher short circuit current densities. The correlation between doping concentration, simple stack architecture modifications and the performance improvement is duly presented. In the third and last part, the impact of tri-component bulk heterojunction absorption layers is investigated, as these have potential to broaden the sensitivity spectrum of organic solar cells without chemical modification of designated absorber molecules. Along with the possibility to easily increase the photocurrent, an interesting behavior of the open circuit voltage has been observed. Knowledge about the impact of slight modifications within the solar stack architecture is important in order to be able to improve the device efficiency for the production of cheap and clean energy.
Style APA, Harvard, Vancouver, ISO itp.
8

Müller, Thomas Christian Mathias [Verfasser], Uwe [Akademischer Betreuer] Rau i Christoph [Akademischer Betreuer] Brabec. "Light absorption and radiative recombination in thin-film solar cells / Thomas Christian Mathias Müller ; Uwe Rau, Christoph Brabec". Aachen : Universitätsbibliothek der RWTH Aachen, 2015. http://d-nb.info/1128598019/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Dunbar, Ricky [Verfasser], i Lukas [Akademischer Betreuer] Schmidt-Mende. "Using metallic nanostructures to trap light and enhance absorption in organic solar cells / Ricky Dunbar. Betreuer: Lukas Schmidt-Mende". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2012. http://d-nb.info/1022318829/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Yin, Guanchao [Verfasser], Martina [Akademischer Betreuer] Schmid, Walter [Akademischer Betreuer] Reimers i John [Akademischer Betreuer] Banhart. "Preparation of ultra-thin CuIn1-xGaxSe2 solar cells and their light absorption enhancement / Guanchao Yin. Gutachter: John Banhart ; Walter Reimers ; Martina Schmid. Betreuer: Martina Schmid ; Walter Reimers". Berlin : Technische Universität Berlin, 2015. http://d-nb.info/107524921X/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Hassan, Safaa. "Optical Property Study of 2D Graded Photonic Super-Crystals for Photon Management". Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1703318/.

Pełny tekst źródła
Streszczenie:
In this dissertation, we study the optical property of 2D graded photonic super-crystals (GPSCs) for photon management. We focused primarily on manipulation and control of light by using the newly discovered GPSCs which present great opportunity for electromagnetic wave control in photonic devices. The GPSC has been used to explore the superior capability of improving the light extraction efficiency of OLEDs. The enhancement of extraction efficiency has been explained in term of destructive interference of surface plasmon resonance and out-coupling of surface plasmon through phase matching provided by GPSC and verified by e-field intensity distributions. A large light extraction efficiency up to 75% into glass substrate has been predicted through simulation. We also study the light trapping enhancement in GPSCs. Broadband, wide incident angle, and polarization independent light trapping enhancement is achieved in silicon solar cells patterned with the GPSCs. In addition, novel 2D GPSCs were fabricated using holographic lithography through the interference lithography by two sets of multiple beams arranged in a cone geometry using a spatial light modulator (SLM). Finally, we also report a fabrication of GPSCs with a super-cell size of 12a×12a by using e-beam lithography. Diffraction pattern from GPSCs reveals unique diffraction properties. In an application aspect, light emitting diode arrays can be replaced by a single light emitting diode shinning onto the diffraction pattern for a uniform fluorescence.
Style APA, Harvard, Vancouver, ISO itp.
12

Schünemann, Christoph. "Organic Small Molecules: Correlation between Molecular Structure, Thin Film Growth, and Solar Cell Performance". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-105169.

Pełny tekst źródła
Streszczenie:
Das wesentliche Ziel dieser Doktorarbeit ist es, die Zusammenhänge zwischen der Struktur von kleinen organischen Molekülen, deren Anordnung in der Dünnschicht und der Effizienz organischer Solarzellen zu beleuchten. Die Kombination der komplementären Methoden spektroskopischer Ellipsometrie (VASE) und Röntgenstreuung, vor allem der unter streifendem Einfall (GIXRD), hat sich als sehr effiient für die Strukturuntersuchungen organischer Dünnschichten erwiesen. Zusammen geben sie einen detailreichen Einblick in die intermolekulare Anordnung, die Kristallinität, die molekulare Orientierung, die optischen Konstanten n und k und die Phasenseparation von organischen Schichten. Zusätzlich wird die Topografie der organischen Dünnschicht mit Rasterkraftmikroskopie untersucht. Der erste Fokus liegt auf der Analyse des Dünnschichtwachstums von Zink-Phthalocyanin (ZnPc) Einzelschichten. Für alle untersuchten Schichtdicken (5, 10, 25, 50 nm) und Substrattemperaturen (Tsub=30°C, 60°C, 90°C) zeigt ZnPc ein kristallines Schichtwachstum mit aufrecht stehenden ZnPc Molekülen. Um effiziente organische Solarzellen herzustellen, werden Donor- und Akzeptormoleküle üblicherweise koverdampft. Bei der Mischung von Donor- und Akzeptormolekülen bildet sich eine gewisse Phasenseparation aus, deren Form wesentlich für die Ladungsträgerextraktion entlang der Perkolationpfade ist. Der Ursprung dieser Phasenseparation wird innerhalb dieser Arbeit experimentell für ZnPc:C60 Absorber-Mischschichten untersucht. Um die Ausprägung der Phasenseparation zu variieren, werden verschiedene Tsub (30°C, 100°C, 140°C) und Mischverhältnisse (6:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:6) bei der Koverdampfung von ZnPc und C60 angewendet. GIXRD Messungen zeigen, dass hier der bevorzugte Kristallisationsprozess von C60 Molekülen die treibende Kraft für eine effiziente Phasenseparation ist. Solarzellen, die ZnPc:C60 Mischschichten mit verbesserter Phasenseparation enthalten (Tsub=140°C, 1:1), zeigen eine verbesserte Ladungsträgerextraktion und somit eine höhere Effizienz von 3,0% im Vergleich zu 2,5% für die entsprechende Referenzsolarzelle (Tsub=30°C, 1:1). Im zweiten Teil der Arbeit wird der Einfluss der Molekülorientierung auf die Dünnschichtabsorption beispielhaft an ZnPc und Diindenoperylen (DIP) untersucht. DIP und ZnPc Moleküle, die auf schwach wechselwirkenden Substraten wie Glas, SiO2, amorphen organischen Transportschichten oder C60 aufgedampft sind, zeigen eine eher stehende Orientierung innerhalb der Dünnschicht in Bezug zur Substratoberfläche. Im Gegensatz dazu führt die Abscheidung auf stark wechselwirkenden Substraten, wie z.B. einer Gold- oder Silberschicht oder 0.5 nm bis 2 nm dünnen PTCDA (3,4,9,10-Perylentetracarbonsäuredianhydrid) Templatschichten laut GIXRD und VASE Messungen dazu, dass sich die ZnPc und DIP Moleküle eher flach liegend orientieren. Dies führt zu einer wesentlich besseren Dünnschichtabsorption da das molekulare Übergangsdipolmoment jeweils innerhalb der Ebene des ZnPc und des DIP Moleküls liegt. Ein Einbetten von Gold- oder Silberzwischenschichten in organischen Solarzellen führt leider zu keinen klaren Abhängigkeiten, da die verbesserte Absorption durch die flach liegenden Moleküle von Mikrokavitäts- und plasmonischen Effekten überlagert wird. Ebenso wenig führte das Einfügen einer PTCDA-Zwischenschicht in organischen Solarzellen zum Erfolg, da hier Transportbarrieren den Effekt der verbesserten Absorption überlagern. Das letzte Kapitel konzentriert sich auf den Einfluss der Molekülstruktur auf das Dünnschichtwachstum am Beispiel von DIP und dessen Derivaten Ph4-DIP und P4-Ph4-DIP, Isoviolanthron und Bis-nFl-NTCDI (N,N-Bis(fluorene-2-yl)-naphthalenetetra-carboxylic Diimid) Derivaten. GIXRD Messungen belegen deutlich, dass die sterischen Behinderungen, hervorgerufen durch die Phenylringe (für Ph4-DIP und P4-Ph4-DIP) und Seitenketten (für Bis-nFl-NTCDI), ein amorphes Schichtwachstum induzieren. Im Vergleich sind die Dünnschichten von DIP und Bis-HFl-NTCDI kristallin. Bezüglich der Molekülorientierung und folglich der Absorption von DIP und dessen Derivaten kann ein starker Einfluss des Schichtwachstums beobachtet werden. In Solarzellen verhindert die Präsenz der Phenylringe eine effiziente Phasenseparation der Mischschichten aus (P4-)Ph4-DIP:C60, was zu einer verschlechterten Ladungsträgerextraktion und damit zu einem reduzierten Füllfaktor (FF) von 52% im Vergleich zu dem entsprechender DIP:C60 Solarzellen mit FF=62% führt Die Untersuchungen an der Bis-nFl-NTICDI Serie zeigen ein ähnliches Ergebnis: Auch hier zeichnen sich die amorphen Schichten aus Bis-nFl-NTCDI Molekülen mit Seitenketten durch schlechtere Transporteigenschaften aus als nanokristalline Bis-HFl-NTCDI Schichten
The aim of this thesis is to demonstrate correlations between the molecular structure of small organic molecules, their arrangement in thin films, and the solar cell performance. For structure analysis of the organic thin films, the combination of variable angle spectroscopic ellipsometry (VASE) and grazing incidence X-ray diffraction (GIXRD) as complementary methods turned out to be a powerful combination. Using both methods, it is possible to obtain information about the crystallinity, crystallite size, intermolecular arrangement, mean molecular orientation, optical constants n and k, and phase separation within thin films. In addition, the topography of thin films is analyzed by atomic force microscopy. First, the thin film morphology of pristine zinc-phthalocyanine (ZnPc) films deposited at different substrate temperatures (Tsub=30°C, 60°C, 90°C) and for varying film thicknesses (5, 10, 25, 50 nm) is investigated. The ZnPc films grow highly crystalline with an upright standing molecular orientation with respect to the substrate surface for all investigated Tsub and all film thicknesses. In effcient organic solar cells, donor and acceptor molecules are commonly co-deposited to form a blend absorber film. This is usually accompanied by a certain phase separation between donor and acceptor molecules leads to a formation of percolation paths necessary to extract electrons and holes towards the electrodes. For ZnPc:C60 blends the origin of this phase separation process is analyzed by investigating different degrees of phase separation induced by film deposition at different Tsub (30°C, 100°C, 140°C) and for different blend ratios (6:1, ... , 1:6 (vol%)). GIXRD measurements indicate that the preferred crystallization of C60 is the driving force for good phase separation. Solar cells with improved phase separation of ZnPc:C60 blends (Tsub=140°C, 1:1) reveal a better charge carrier extraction and thus enhanced effciencies of 3.0% in comparison to 2.5% for the reference device (Tsub=30°C, 1:1). In the second part, the impact of molecular orientation within the absorber thin films on light harvesting is examined for pristine ZnPc and diindenoperylene (DIP) films. For film deposition on weakly interacting substrates like glass, SiO2, amorphous organic transport films, or C60, the orientation of DIP and ZnPc molecules is found to be upright standing. In contrast, GIXRD and VASE measurements show that films deposited onto strongly interacting substrates like Au and Ag, as well as on thin PTCDA templating layers lead to nearly flat-lying ZnPc and DIP molecules. Since the molecular transition dipole moment is oriented in the plane of the DIP and ZnPc molecules, the light absorption in films with flat-lying molecules is strongly improved. Unfortunately, an implementation of Au or Ag sublayers in organic solar cells does not result in reliable dependencies since the enhanced absorption by an improved molecular orientation is superimposed by different effects like microcavity and plasmonic effects. The implementation of PTCDA interlayers leads to transport barriers making the solar cell data interpretation difficult. In the last part, the influence of molecular structure on thin film growth is studied for DIP and its derivatives Ph4-DIP and P4-Ph4-DIP, isoviolanthrone, and Bis-nFl-NTCDI derivatives. GIXRD measurements reveal that steric hindrance is induced by the addition of side chains (for Bis-nFl-NTCDI) and phenyl rings (for Ph4-DIP and P4-Ph4-DIP) (N,N-Bis(fluorene-2-yl)-naphthalenetetra-carboxylic diimide) leading to an amorphous thin film growth. In contrast, DIP films and Bis-HFl-NTCDI films are found to be crystalline. The mean molecular orientation and hence the absorption is strongly affected by the different growth modes of DIP and its derivatives. In OSC, the presence of the phenyl rings prevents an effcient phase separation for (P4-)Ph4-DIP:C60 blends which causes diminished charge extraction in comparison to the crystalline DIP:C60 blends. For the Bis-nFl-NTCDI series, the transport properties are significantly worse in the amorphous films composed of Bis-nFl-NTCDI derivatives with alkyl chains in comparison to the nanocrystalline films made of the bare Bis-HFl-NTCDI
Style APA, Harvard, Vancouver, ISO itp.
13

Bessi, Matteo. "DEVELOPMENT OF NEW HIGHLY CONJUGATED MOLECULES AND THEIR APPLICATION IN THE FIELD OF RENEWABLE ENERGY AND BIOMATERIALS". Doctoral thesis, Università di Siena, 2018. http://hdl.handle.net/11365/1066871.

Pełny tekst źródła
Streszczenie:
Negli ultimi anni, i materiali funzionalizzati ibridi hanno iniziato ad essere largamente impiegati in applicazioni altamente tecnologiche, dai sensori bio/medicali alla produzione di energie rinnovabili. Per questa ragione sono diventati l’oggetto di diversi studi nell’ambito della scienza dei materiali. Allo stesso tempo, le molecole organiche coniugate sono state intensivamente analizzate per via delle loro proprietà particolari riconducibili alla presenza di un lungo sistema di legami π, dalla possibilità di condurre elettricità al loro largo spettro di assorbimento della radiazione luminosa. Questo lavoro di tesi si è concentrato sull’introduzione di questi sistemi all’interno di due tipi di materiali ibridi, dei dispositivi fotovoltaici per la produzione di elettricità (in particolare delle celle solari sensibilizzate a coloranti) e di carburanti alternativi (idrogeno), e degli idrogel biocompatibili sensibili agli stimoli (capaci di condurre elettricità e di reagire a stimoli luminosi), ed inoltre sullo studio della loro influenza sulle caratteristiche del materiale finale.
In recent years hybrid functional materials began to be employed in a series of technologically advanced applications spanning from bio/medical sensors, to renewable energy generation. For this reason, they became the focus of several studies in the field of materials science. At the same time, conjugated molecules have also been intensively investigated, due to the properties arising by the presence of long π-conjugated systems, from the possibility to conduct electricity to the ability to absorb light in a wide range of wavelengths. This PhD work focused on the introduction of such systems in two different kinds of hybrid materials, namely photovoltaic devices for the production of electricity (in particular Dye Sensitzed Solar Cells) and alternative fuels hydrogen), and biocompatible stimuli-responsive hydrogels (capable to conduct electricity and to react upon irradiation), and on the study of their influence on the characteristics of the final material.
Ces dernières années, les matériaux fonctionnels hybrides ont commencé à être employés pour des applications de la haute technologie, allant des senseurs bio/médicaux, à la production d’énergie renouvelable. Pour cette raison, ils sont devenus le centre de plusieurs études dans le domaine des sciences des matériaux. Simultanément, des molécules conjuguées ont été examinée intensément à cause de leurs propriétés venant de leurs longs systèmes π, allant de la possibilité de conduire l’électricité, à leur capacité d’absorber la lumière dans une grande fenêtre spectrale. Le travail de cette thèse se concentre sur l’introduction de tels systèmes dans deux sortes de matériaux hybrides, les dispositifs photovoltaïques pour la production d’électricité (en particuliers les cellules solaires à pigment photosensible) et de carburants alternatifs (hydrogène), et pour les hydrogels biocompatibles sensibles aux stimuli (capables de conduire l’électricité et de réagir sous irradiation), et sur l’étude de leur influence sur les caractéristiques du matériau final.
Style APA, Harvard, Vancouver, ISO itp.
14

Pastorelli, Francesco. "Light enhancements in nano-structured solar cells". Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/145638.

Pełny tekst źródła
Streszczenie:
In this century some of our main issues are energy shortage and pollution. This work will briefly describe these problems, proposing a plan of action combining energy saving and different sustainable energy sources. Within different types of renewable energy sources, solar energy is the most abundant one. To make solar energy a more sustainable and cost effective technology we focus on enhancing the optical characteristics of thin film solar cells. In this category, organic solar cells are good options for their exiguous amount of material and the low energy needed for the fabrication process. This technology can be lightweight, transparent, flexible and conformal in order to be applied to and integrated in various architectural solutions and consumer electronics. After a study of the physics of such devices and on how to optically enhance their performances, we will show some examples where we theoretically and experimentally collect the solar radiation with optical antennas. We report, for the first time in literature, a nanogap antenna that efficiently couples the light in our active material thin film. Finally, we elaborate on the concept of building integrated photovoltaics introducing some examples of solar façades. Based on our research, we are able to design and fabricate an organic transparent solar cell with a visible transparency above 20% and an optically enhanced photon-electron conversion efficiency remarkably similar to its opaque equivalent.
En el presente siglo, algunas de las prioridades son la escasez de la energía y la contaminación. Este trabajo describirá brevemente estos problemas y propondrá un plan de acción que combina el ahorro energético con diferentes fuentes sostenibles de energía. Dentro de estas fuentes de energía renovables, la energía solar es la más abundante. Con el objetivo de hacer la tecnología solar más sostenible y eficiente económicamente nos concentramos en aumentar las características ópticas en celdas solares de película delgada. Dentro de esta categoría, las celdas solares orgánicas son una buena opción porque su desarrollo requiere bajas cantidades de materiales y su fabricación es de baja energía embebida. Adicionalmente, esta tecnología puede ser liviana, transparente, flexible mecánicamente y modular para ser aplicada e integrada en varias soluciones arquitectónicas y de electrónica de consumo. Luego de estudiar los procesos físicos en tales dispositivos y de determinar las metodologías para aumentar ópticamente sus desempeños, mostraremos algunos ejemplos donde teórica y experimentalmente se colecta la radiación solar mediante antenas ópticas. Se reporta por primera vez, una antena de nanogap que acopla eficientemente la luz en la capa activa de la celda solar. Finalmente, se desarrolla el concepto de tecnología fotovoltaica integrada en edificaciones tras introducir algunos ejemplos de fachadas solares. Basados en nuestra investigación, fue posible diseñar y fabricar una celda solar orgánica transparente cuya transparencia en el rango visible estuvo por encima del 20% y una eficiencia de conversión foton-electron aumentada ópticamente que resulto notoriamente similar a la celda solar orgánica opaca equivalente.
La rareté grandissante des ressources en énergie associée à une augmentation de la pollution font partie des enjeux plus importants de ce siècle. Cette thèse décrira brièvement ces deux problématiques et proposera un plan d’action combinant économie d’énergie et diversité des sources d’énergies renouvelables. Parmi les formes d’énergies renouvelables disponibles, l’énergie solaire est la plus abondante. Pour faire de l’énergie solaire une ressource plus durable et plus rentable économiquement, nous proposons d’amplifier les propriétés optiques de cellules solaires en couches minces. Dans cette catégorie, les cellules solaires organiques représentent un choix pertinent de part la faible quantité de matériau nécessaire ainsi que la faible énergie nécessaire au procédé de fabrication. Cette technologie peut être légère, transparente et flexible de sorte qu’elle peut être utilisée dans différentes solutions architecturales s’adaptant à des produits électroniques pour le grand publique. Suivra la théorie sous jacente à ces dispositifs et l’explication de la manière dont leurs performances sont améliorées. Nous présenterons quelques exemples où l’on collecte la radiation solaire avec une antenne optique. Ainsi, nous faisons la toute première démonstration d’une antenne auto-assemblée qui couple efficacement la lumière dans le matériau constituant la couche mince que nous utilisons. Finalement, nous développons le concept de cellules photovoltaïques intégrées en présentant différents cas de façades solaires. Ces travaux nous ont permis de concevoir et de fabriquer une cellule solaire organique transparente avec une transparence dans le visible de 20% et une efficacité de conversion photon-électron améliorée, similaire à une cellule équivalente opaque.
La difficile reperibilità di risorse energetiche e l’inquinamento sono alcuni dei problemi più importanti di questo secolo. In questo lavoro saranno presentati brevemente questi temi proponendo un piano d’azione che abbini il risparmio energetico alle differenti fonti di energia rinnovabili. Nell’insieme delle fonti energetiche rinnovabili l’energia solare è senz’altro la più abbondante. Con l’obbiettivo di rendere lo sfruttamento di tale energia più sostenibile ed economicamente vantaggioso, ci premuriamo di migliorare le caratteristiche ottiche di celle fotovoltaiche a film sottile. In questa categoria utilizziamo, tra le diverse opzioni, le celle solari organiche in quanto la loro fabbricazione richiede una quantità di materiale minimo e un basso consumo energetico. Inoltre questi tipi di dispositivi possono essere leggeri, trasparenti, flessibili e conformabili alle superfici su cui sono applicati. Questa è una tecnologia che potrebbe essere implementata e integrata in varie soluzioni architettoniche o nell’ elettronica di consumo. Dopo aver presentato i principi fisici di tali dispositivi e determinato le metodologie ottiche per aumentarne le prestazioni, vengono illustrati alcuni esempi dove, teoricamente e sperimentalmente, riusciamo a intercettare la radiazione solare con antenne ottiche. Riportiamo, per la prima volta in letteratura, un’antenna ottica con nano-gap che accoppia efficacemente la luce solare nel nostro materiale attivo a film sottile. Nell’ultima parte sviluppiamo il concetto di tecnologia solare integrata negli edifici, introducendo alcuni esempi di facciate solari. Basando il design sulla nostra ricerca, è possibile realizzare una cella solare fotovoltaica organica trasparente, con una trasparenza superiore del 20% e un’ efficienza di conversione fotone-elettrone migliorata grazie all’ottica, che risulta molto vicina all’ equivalente cella fotovoltaica organica non trasparente.
Style APA, Harvard, Vancouver, ISO itp.
15

Mariano, Juste Marina. "Light harvesting in fiber array organic solar cells". Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/284206.

Pełny tekst źródła
Streszczenie:
Considering that the most abundant renewable energy source is the Sun, photovoltaic technology possesses one of the highest potentials to provide environmental benign and sustainable energy worldwide. Currently, most of commercial available modules are fabricated from crystalline silicon because of its high efficiency. To lower fabrication costs and increase the functionality of the solar modules, several thin film technologies are under development. Among them, organic photovoltaics has created large expectations provided it possesses some intrinsic advantages, such as light weight, flexibility or semi-transparency. However, the low charge mobility in the majority of the organic semiconductor materials prevents the use of active layers thicker than a few hundred nanometers. This leads to a limited light harvesting capacity and, consequently, a limited conversion efficiency. Different optical approaches have been considered to enhance the absorption of organic solar cells and increase their efficiency. In this thesis, we propose a novel configuration based on the use of fiber arrays to effectively trap light and efficiently couple it into the active layer to enhance absorption. The thesis work is presented in five chapters. After an introductory chapter, in chapter 2 light absorption of an organic solar cell deposited on the backside of a fiber array is studied theoretically. A strong enhancement in light harvesting is predicted using such configuration. For small diameter fibers the enhancements originated from light coupling to some low quality whispering gallery modes, while for large diameter fibers light seemed to be effectively trapped inside the fiber structure. In chapter 3 and 4, we consider the dip-coating procedure, a fabrication technique that can be applied to deposit from a precursor solution, layers on a substrate irrespective of its shape. Its viability is demonstrated by applying it to different device architectures. The deposition on such non-flat substrates of the rest of the layers forming an organic solar cell is also examined. For instance, several relevant changes that had to be introduced to the ITO sputtering to obtain transparent electrodes with an optimal quality, both, optically and electrically, are discussed. Once the layer deposition is optimized to fulfill the electrical and optical requirements of organic solar cells, in chapter 5, we experimentally demonstrate that an enhanced light absorption can be achieved from such organic solar cells when deposited on fiber arrays. Optical fibers of 80 µm in diameter were used to fabricate the arrays to be used as the cell substrate. Such substrates were coated with an organic solar cell of evaporated small molecules. The implemented fiber array configuration is seen to be an effective light trapping method. Indeed, the photogenerated current from such devices is shown to increase by a 26%, which is a considerable percentage when compared to the majority of the optical approaches that were considered in the past to enhance absorption in organic cells.
Si considerem que la font d'energia renovable més a abundant és el Sol, la tecnologia fotovoltaica posseeix un dels potencials més alts per poder produir l'energia mundial de forma sostenible i benigne amb el medi ambient. Actualment la majoria dels mòduls comercials estan fabricats de silici cristal.lí ja que aquest material té una gran eficiència. Per tal de rebaixar els costos de producció i incrementar la funcionalitat d'aquest panells solars, diverses tecnologies de capa prima s'estan desenvolupant. Entre elles, la tecnologia fotovoltaica amb materials orgànics ha creat grans expectatives gràcies a les seves propietats intrínseques, com per exemple la seva lleugeresa, flexibilitat o bé semi transparència. Per altra banda, la baixa mobilitat de les càrregues en la majoria dels semiconductors orgànics impedeix l'ús de capes actives no molt més gruixudes que uns pocs nanòmetres. Això provoca que tinguin una capacitat de col.lecció lumínica limitada i com a conseqüència, la eficiència de conversió energètica també ho és. S'han considerat diferents estratègies òptiques per tal de millorar l'absorció en les cel.les solars orgàniques i incrementar la seva eficiència. En aquesta tesi proposem una configuració innovadora basada en l'ús d'una matriu de fibres, les quals atrapen i acoblen la llum en la capa activa per millorar l'absorció d'aquesta. La present tesi consta de cinc capítols. Després d'un capítol introductori, en el capítol 2 s'estudia teòricament l'absorció de llum d'una cel·la solar orgànica dipositada en la part posterior de la matriu de fibres. Per diàmetres de fibra petits, les millores són degudes a l'acoblament d'uns modes recirculants de llum de baixa qualitat. Mentre que per diàmetres grans, la llum sembla estar atrapada de forma efectiva dins de l'estructura formada per les fibres. En els capítols 3 i 4 hem considerat el recobriment per immersió, aquesta tècnica de fabricació pot ser aplicada per dipositar capes des d'una solució precursora a un substrat, independentment de la seva forma. La validesa de la tècnica es demostra quan s'aplica a diferents arquitectures de cel·la. El dipòsit en aquestes estructures no planes de la resta de les capes que formen la cel·la solar orgànica també s'ha investigat. Per exemple, es discuteixen varis canvis rellevants, els quals s'han tingut que introduir per la polvorització catòdica del ITO, per tal d'obtenir elèctrodes transparents amb unes qualitats òptiques i elèctriques òptimes.
Style APA, Harvard, Vancouver, ISO itp.
16

Fisher, Brett. "Nanoscale light manipulation for improved organic solar cells". Thesis, University of Surrey, 2017. http://epubs.surrey.ac.uk/844680/.

Pełny tekst źródła
Streszczenie:
Organic Solar Cells can be made to be flexible, semi-transparent, and low-cost making them ideal for novel energy harvesting applications such as in greenhouses. However, the main disadvantage of this technology is its low energy conversion efficiency (< 15%); mostly due to high recombination rates, compared with other higher performing technologies, such as thinfilm GaAs (> 30% Efficiency), and Si-based (> 20% Efficiency), solar cells, where recombination within these technologies is much less than Organic Solar Cells. There are still many challenges to overcome to improve the efficiency of Organic Solar Cells. Some of these challenges include: Maximising the absorption of the solar spectrum; improving the charge dynamics; and increasing the lifetime of the devices. One method to address some of these challenges is to include plasmonic nanoparticles into the devices, which has been shown to increase the absorption through scattering, and improve the charge dynamic through localised surface plasmon resonance effects. However, including nanoparticles into Organic Solar Cells has shown to adversely affect the performance of the devices in other ways, such as increasing the recombination of excitons. To address this, an additional (insulating) coating around the nanoparticles supresses this increase, and has shown to be able to increase the performance of the solar cells. In this work, we demonstrate the use of our all-inclusive optical model in the design and optimisation of bespoke colour-specific windows (i.e. Red, Green, and Blue), where the solar cells can be made to have a specific transparency and colour, whilst maximizing their efficiency. For example, we could specify that we wish the colour to be red, with 50% transmissivity; the model will then maximise the Power Conversion Efficiency. We also demonstrate how our extension to Mie theory can simulate nanoparticle systems and can be used to tune the plasmon resonance utilising different coatings, and configurations thereof.
Style APA, Harvard, Vancouver, ISO itp.
17

Raciti, Rosario. "Quantum confinement effects on light absorption in Germanium for solar energy conversion". Doctoral thesis, Università di Catania, 2017. http://hdl.handle.net/10761/3689.

Pełny tekst źródła
Streszczenie:
The world demand for energy is continuously increasing with a rate that will soon become unsustainable given the current exploitation of energy sources (such as fossil fuels). In addition, it should be figured out that most of commonly used energy resource are limited and that humankind has liberated a quantity of carbon (as CO2) in the past 250 years that it took our planet about 250 million of years to sequester. In this context, a wide and exciting range of possible solutions to provide enough and cleaner energy is represented by nanotechnologies offering innovative materials with interesting effects exploitable for energy production, distribution and saving. Among other materials, Group-IV semiconductors have been deeply investigated since they allow the fabrication of abundant, non-toxic, mono-elemental nanostructures (as Si quantum dots, C nanotubes, Ge nanowires, et al.) thanks to high purity and mature technology. Moreover, fascinating effects due to quantum confinement in this nanostructures can be effectively exploited for energy production in photovoltaics devices. Among them, Ge reveals interesting optical properties due to its quasi-direct bandgap, higher absorption coefficient and larger exciton Bohr radius with respect to Si, giving the chance to easily tune the optical properties by exploiting quantum confinement effect (QCE). However, the properties of Ge quantum dots (QDs) depends not only on the size as many other parameters can concur in controlling their optical behavior, especially for what concerns the optical bandgap. For this reason, the aim of this thesis is devoted to a detailed investigation of the optical properties of Ge QD, with particular emphasis on the light absorption properties and its modulation by QCE.
Style APA, Harvard, Vancouver, ISO itp.
18

Heinrichová, Patricie. "Fotogenerace náboje v organických polovodičích". Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2015. http://www.nusl.cz/ntk/nusl-233406.

Pełny tekst źródła
Streszczenie:
The interest in the detail knowledge about elementary electronic processes during photogeneration of charge carriers, which allow achieving higher efficiency of organic solar cells, grows with advent of the commercial organic solar cells production. The thesis is focused on study of photogeneration of charge carriers in organic semiconductors, especially in -conjugated polymer materials. First part of the thesis summarized state of the art in studies of photogeneration of charge carriers in polymer solar cells. Subsequent experimental and results part are focused on study of polymeric solar cells prepared from electron donor polymers MDMO-PPV, Tg-PPV, PCDTBT and PCBTDPP and electron acceptor derivates of fullerenes PC60BM and PC70BM. Results of the thesis are divided in tree main parts: 1) study of charge transfer between electron donor and electron acceptor materials by optical methods, 2) study of charge transfer between electron donor and electron acceptor materials by optoelectrical methods and 3) development of organic solar cells on flexible substrates. The last part is focused largely on deposition methods of active materials thin layer.
Style APA, Harvard, Vancouver, ISO itp.
19

Han, Lu. "Synthesis of a Fullerene Acceptor with Visible Absorption for Polymer Solar Cells". University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1399248320.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Hoye, Robert Lianqi Zhao. "Tuning metal oxides for solar cells and light emitting diodes". Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708724.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Branham, Matthew S. "Ultrathin crystalline silicon solar cells incorporating advanced light-trapping structures". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97833.

Pełny tekst źródła
Streszczenie:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 105-110).
Solar photovoltaics, which convert the energy potential of photons from the sun directly into electrical power, hold immense promise as a cornerstone of a clean energy future. Yet their cost remains greater than that of conventional energy sources in most markets and a barrier to large-scale adoption. Crystalline silicon modules, with a 90% share of the worldwide photovoltaic market, have witnessed a precipitous drop in price over the last decade. But going forward, further evolutionary cost reduction will be difficult given the significant cost of the silicon wafer alone - roughly 35% of the module. Dramatically reducing the thickness of silicon used to make a solar cell from the current 350 [mu]m could rewrite the economics of photovoltaics. For thin-film crystalline silicon solar cells to deliver the anticipated cost benefits of reduced material requirements, it is essential that they also yield power conversion efficiencies comparable to commercial solar cells. A significant hurdle to realizing elevated efficiency in crystalline silicon films thinner than 20 [mu]m is the loss of current resulting from reduced photon absorption. A range of light management structures have been proposed in the literature to address this issue and many have been demonstrated to provide high absorption across the spectral range relevant to crystalline silicon, but their promise has yet to be realized in an active photovoltaic device. The focus of this thesis is the development of an experimental platform and fabrication process to evaluate the effectiveness of theoretically-designed light-trapping structures in functional photovoltaic devices. The experimental effort yielded 10-pm-thick crystalline silicon solar cells with a peak short-circuit current of 34.5 mA cm-² and power conversion efficiency of 15.7%. The record performance for a crystalline silicon photovoltaic of such thinness is enabled by an advanced light-trapping design incorporating a 2D photonic crystal and a rear dielectric/reflector stack. A parallel line of questioning addressed in this thesis is whether periodic wavelength-scale optical structures are superior to periodic or random structures with geometric-optics-scale features. Through the synthesis of experimental and theoretical evidence, the case is constructed that wavelength-scale light-trapping structures are in fact comparable to conventional random pyramid surface structures for broad-spectrum absorption in silicon solar cells as thin as 5 [mu]m. These results have important implications for the design of cost-effective and manufacturable light-trapping structures for ultrathin crystalline silicon solar cells.
by Matthew S. Branham.
Ph. D.
Style APA, Harvard, Vancouver, ISO itp.
22

Gandhi, Keyur. "Enhancement of light coupling to solar cells using plasmonic structures". Thesis, University of Surrey, 2015. http://epubs.surrey.ac.uk/808845/.

Pełny tekst źródła
Streszczenie:
Photovoltaic technologies are likely to become one of the world’s major renewable energy generators in the future provided they are able to meet the increasing world energy demands at a significantly lower generation cost compared to conventional non-renewable energy sources. Photovoltaic systems based on 1st generation mono or poly crystalline silicon wafers have already been commercially successful over the past two decades. As the technology further develops however, it faces fundamental limits to further reduce cost which are primarily due to processing of silicon wafers. Hence, a 2nd generation of “thin film” photovoltaic systems, such as amorphous and poly silicon, CdTe and CIGS, which use cheap materials and inexpensive manufacturing processes with relatively high power conversion efficiency, have been developed. In order to commercialise the 2nd generation technology successfully, the efficiency of the thin film photovoltaic panels needs to increase to compete with the 1st generation silicon photovoltaics. Plasmonic structures provide a route to increase the efficiency of 2nd generation thin film photovoltaic devices. With the unique properties of plasmonic structures, such as ability to guide and trap light at nanometre dimensions, light absorption in the photoactive layer of thin film photovoltaic device can be increased resulting in improved device performance. In this research, plasmonic nanoparticles are utilised as an anti-reflection coating on the front side of the PV, coupling light into the active PV layer, and as scattering centres at the back reflector, increasing the path length of the light through the photoactive layer. The optical and electrical effects of the plasmonic structures are modelled simultaneously using a commercial technology computer aided design (TCAD) simulation package to understand and optimise the plasmonic effects on the performance of the 2nd generation thin film amorphous silicon, and 3rd generation organic, photovoltaic devices. The thesis describes the first ever dedicated optoelectronic model to simultaneously simulate optical and electrical properties of plasmonic thin film photovoltaics devices in collaboration with the TCAD software developer Silvaco Inc. The model demonstrates a maximum 12% relative increase in the power conversion efficiency of plasmon enhanced n-i-p configured amorphous silicon thin film photovoltaic devices. This remarkable increase in the performance is due to the light trapping in the photoactive layer of the thin film amorphous silicon photovoltaic devices, which results in improvements in the both the optical and electrical properties. Experimental work was also carried out to observe the plasmonic effects of the metal nanoparticles on the performance of 3rd generation organic photovoltaic devices which were subsequently modelled using the simulation package. A 4% relative increase in the efficiency was achieved using gold nanoparticles. A plasmonic organic photovoltaic device model and material library for the commercial organic semiconductor P3HT:PCBM, has also been developed and benchmarked experimentally. The model has assisted in the understanding of the effect of the plasmonic gold nanoparticles on the increased performance, as well as degradation effects due to the incorporation of silver nanoparticles.
Style APA, Harvard, Vancouver, ISO itp.
23

Sesuraj, Rufina. "Plasmonic mirror for light-trapping in thin film solar cells". Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/366663/.

Pełny tekst źródła
Streszczenie:
Microcrystalline silicon solar cells require an enhanced absorption of photons in the near-bandgap region between 700-1150nm. Conventional textured mirrors scatter light and increase the path length of photons in the absorber by total internal reflection. However, these mirrors exhibit a high surface roughness which degrades the performance of the microcrystalline silicon device. An alternative solution is to use metal nanoparticles with low surface roughness to scatter light. An illuminated metal nanoparticle exhibits a resonant or plasmonic excitation which can be tuned to enable a strong scattering of light. This work aims to develop an efficient near-infrared light-scattering system using randomly arranged metal nanoparticles near a mirror. Situating the nanoparticles at the rear of the solar cell helps to target weakly absorbed photons and eliminate out-coupling losses by the inclusion of a rear mirror. Simulation results show that the electric field driving the plasmonic resonance can be tuned with particle-mirror separation distance. The plasmonic scattering is maximised when the peak of the driving field intensity coincides with the intrinsic resonance of the nanoparticle. An e-beam lithography process was developed to fabricate a pseudo-random array of Ag nanodiscs near a Ag mirror. The optimized plasmonic mirror, with 6% coverage of 200nm Ag discs, shows higher diffusive reflectivity than a conventional textured mirror in the near-infrared region, over a broad angular range. Unlike a mirror with self-organised Ag islands, the mirror with Ag nanodiscs exhibits a low surface roughness of 13.5nm and low broadband absorption losses of around 10%. An 8.20% efficient thin n-i-p μc-Si:H solar cell, with the plasmonic mirror integrated at the rear, has been successfully fabricated. The optimised plasmonic solar cell showed an increase of 2.3mA in the short-circuit current density (Jsc), 6mV in the open-circuit voltage (Voc) and 0.97% in the efficiency (η), when compared to the planar cell counterpart with no nanodiscs. The low surface roughness of the plasmonic mirror ensures no degradation in the electrical quality of the μc-Si:H layer – this is also confirmed by the constant value of the fill factor (FF). The increase in Jsc is demonstrated to be mainly due to optical absorption enhancement in the near-infrared region as a result of plasmonic scattering, by detailed calculation of the exact photogenerated current in the plasmonic and planar devices, for the 700-1150nm wavelength range.
Style APA, Harvard, Vancouver, ISO itp.
24

Crudgington, Lee. "High-performance amorphous silicon solar cells with plasmonic light scattering". Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/390381/.

Pełny tekst źródła
Streszczenie:
This research project is focused on the process optimisation and optical enhancement of the hydrogenated amorphous silicon solar cell design, achieved by the incorporation of light scattering plasmonic nano-particles. These treatments consist of a very thin layer of finely tuned silver metal-island films, which preferentially scatter light within a wavelength range tailored to the device absorption characteristic. This serves to increase the optical path length without the need for surface texturing of the semiconductor material. Within this study, the PECVD process is used to explore the parameter space and fabricate silicon thin films with excellent optical and electrical performance, and a P-I-N amorphous silicon device structure is fabricated with a high performance of 6.5% conversion efficiency, 14.04mA/cm2 current density and 0.82V open circuit voltage. The effects of metallic nano-particle arrays is demonstrated by numerical simulation, showing that variations in particle size, shape, position within the structure and surrounding material greatly influence the enhancement of the nano-particles on silicon absorber layers, and that particles positioned at the rear of the device structure adjacent to a back reflector avoid absorption losses which occur below the particle resonance frequency when such structures are positioned at the front surface. It is shown than an improvement in optical absorption of just over 1% is possible using this method. Silicon thin films are fabricated with self-organised nano-particle arrays via means of annealed metal films, positioned at the front or back adjacent to a metallic reflector, and measurements of optical transmittance, reflectance and absorption are taken. The optimum annealing temperature and duration is identified, and it is shown that these variables can greatly affect the absorption of the device stack. To conclude the study, an amorphous silicon P-I-N photovoltaic device is fabricated featuring self-organised nanoparticle arrays within the back reflector, and a modest improvement of energy conversion efficiency is observed with scope for further optimisation and enhancement.
Style APA, Harvard, Vancouver, ISO itp.
25

Lind, Sebastian. "Recombination losses in organic solar cells : Study of recombination losses in organic solar cells by light intensity-dependent measurements". Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik (from 2013), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-68584.

Pełny tekst źródła
Streszczenie:
Easy manufacturing, light weight and inexpensive materials are the key qualities of organic solar cells that makes them a highly researched area. To make organic solar cells adequate for the market, the efficiency of power conversion has to increase further, and the lifetime of organic solar cells has to improve. Avoiding recombination losses is a piece in the puzzle that can make organic solar cells more efficient. Organic solar cells with two different hole transport layers were therefore examined by I-V measurements. It was found that the organic solar cell with MoO3 as the HTL possesses a higher current density in both the reverse region and forward region. The higher current density in both regions points towards a less successful blocking of electrons travelling to the anode (reverse region) and a better ability to transport holes from the active layer to the anode. Insight to different state of recombination was also found from the slope values in the Voc and Jsc as a function of light intensity plots. It was concluded that both solar cells experience a dominant monomolecular recombination under short circuit condition and evolved into bimolecular recombination under open circuit condition. However, the cell with CuSCN showed a more dominant bimolecular recombination, which was shown from a slope closer to one unity kT/q in the Voc as a function of light intensity plot.
Style APA, Harvard, Vancouver, ISO itp.
26

Tvingstedt, Kristofer. "Light Trapping and Alternative Electrodes for Organic Photovoltaic Devices". Doctoral thesis, Linköpings universitet, Biomolekylär och Organisk Elektronik, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-17229.

Pełny tekst źródła
Streszczenie:
Organic materials, such as conjugated polymers, have emerged as a promising alternative for the production of inexpensive and flexible photovoltaic cells. As conjugated polymers are soluble, liquid based printing techniques enable production on large scale to a price much lower than that for inorganic based solar cells. Present day state of the art conjugated polymer photovoltaic cells are comprised by blends of a semiconducting polymer and a soluble derivative of fullerene molecules. Such bulk heterojunction solar cells now show power conversion efficiencies of up to 4-6%. The quantum efficiency of thin film organic solar cells is however still limited by several processes, of which the most prominent limitations are the comparatively low mobility and the high level of charge recombination. Hence organic cells do not yet perform as well as their more expensive inorganic counterparts. In order to overcome this present drawback of conjugated polymer photovoltaics, efforts are continuously devoted to developing materials or devices with increased absorption or with better charge carrier transporting properties. The latter can be facilitated by increasing the mobility of the pure material or by introducing beneficial morphology to prevent carrier recombination. Minimizing the active layer film thickness is an alternative route to collect more of the generated free charge carriers. However, a minimum film thickness is always required for sufficient photon absorption. A further limitation for low cost large scale production has been the dependence on expensive transparent electrodes such as indium tin oxide. The development of cheaper electrodes compatible with fast processing is therefore of high importance. The primary aim of this work has been to increase the absorption in solar cells made from thin films of organic materials. Device construction, deploying new geometries, and evaluation of different methods to provide for light trapping and photon recycling have been strived for. Different routes to construct and incorporate light trapping structures that enable higher photon absorption in a thinner film are presented. By recycling the reflected photons and enhancing the optical path length within a thinner cell, the absorption rate, as well as the collection of more charge carriers, is provided for. Attempts have been performed by utilizing a range of different structures with feature sizes ranging from nanometers up to centimeters. Surface plasmons, Lambertian scatterers, micro lenses, tandem cells as well as larger folded cell structures have been evaluated. Naturally, some of these methods have turned out to be more successful than others. From this work it can nevertheless be concluded that proper light trapping, in thin films of organic materials for photovoltaic energy conversion, is a technique capable of improving the cell performance. In addition to the study of light trapping, two new alternative electrodes for polymer photovoltaic devices are suggested and evaluated.
Style APA, Harvard, Vancouver, ISO itp.
27

Kayra, Seda. "Imaging Solar Cells Using Terahertz Waves". Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12612920/index.pdf.

Pełny tekst źródła
Streszczenie:
In this thesis, Terahertz Time-Domain spectroscopy (THz-TDS) was used in order to measure the electrical properties of silicon solar cells. The advantage of THz-TDS is that it allows us to measure the electrical properties without electrical contacts. In order to perform these measurements, a reflection based system was constructed and the changes in the peak amplitude in the time-domain under a, 450mW 808 nm continuous wave laser source were measured. The solar cell that was used in this thesis was manufactured in Middle East Technical University Microelectromechanical Systems (METU-MEMS) research laboratories located in Ankara, Turkey. The solar cell that we used in the measurements had a thickness of 0.45 mm and was produced on a single silicon crystal in <
100>
direction. It is made up of a p-type base and n-type emitter to create p-n junction. Also, it has a Si4N3 AR coating and Al back contacts on it. To compare the THz measurements to that of electrical measurements, some electrical contact measurements were performed on the solar cell under laser illumination. By using these measurements, the energy conversion efficiency and the quantum efficiency of the solar cell were calculated and measured as 3.44 % and 7%, respectively under the 450mW, 808nm illumination on a specific area of the cell. The results that were obtained form the electrical measurements were compared with the THz results. We found that in order to understand the efficiency of the solar cell using THz-TDRS, a more comprehensive study needs to be done where the changes in the reflection of the THz radiation under different excitation powers and different configurations of the system need to be studied.
Style APA, Harvard, Vancouver, ISO itp.
28

Abdullah, Abdulmuin Mostafa. "MULTISCALE MODELING OF III-NITRIDE CORE-SHELL SOLAR CELLS". OpenSIUC, 2017. https://opensiuc.lib.siu.edu/dissertations/1327.

Pełny tekst źródła
Streszczenie:
Multiscale computational simulations are performed to investigate how electronic structure and optical absorption characteristics of recently reported nanostructured III-nitride core-shell MQW solar cells are governed by an intricate coupling of size-quantization, atomicity, and built-in structural and polarization fields. The core computational framework, as available in our in-house QuADS 3-D simulator, is divided into four coupled phases: 1) Geometry construction for the wurtzite lattice having hexagonal crystal symmetry and non-conventional crystal orientations; 2) Structural relaxation and calculation of atomistic strain distributions using the VFF Keating molecular-mechanics model, which employs a conjugate gradient energy minimization scheme; 3) Obtaining the induced polarization and internal potential distributions using a 3-D atomistic Poisson solver; 4) Computing the single-particle electronic structure and optical transition rates using a 10- band sp3 s*-spin tight-binding framework; and 5) Using a TCAD toolkit, study the carrier transport and obtain the device terminal characteristics. Special care was taken in incorporating the nonpolar m-plane crystallographic orientation within the simulator via appropriate lattice vectors, rotational matrices, neighboring atom co-ordinates and sp3-hybridized passivation scheme. Numerical calculations of electronic structure properties are generally based on non-primitive rectangular unit cell. The rectangular geometry approximation is still valid and can be considered even in the presence of strain in nanostructures such as quantum wells, nanowires, and even in self-assembled quantum dots with varying composition. With this approximation, atoms are grouped into traditional unit cells resulting in simpler analysis and better storage scheme, which results in more dynamic and easily debugged algorithms. Note that the contribution of the second-order piezoelectric polarization is small in the nonpolar m-plane structure (as compared to the polar c-plane counterpart) and was neglected in this study. Besides, the spontaneous polarization is non-existent in m-plane structure. The polarization fields are incorporated in the Hamiltonian as an external potential within a non-self-consistent approximation. From the simulations, it is found that, even without the inclusion of any internal fields, the crystal symmetry is lowered compared to ideal geometries, which is due mainly to the fundamental atomicity and interface discontinuities. However, with the inclusion of internal polarization fields, although the symmetry is lowered further, the m-plane structure exhibits a stronger overlap and localization of the wavefunctions, as compared to the c-plane counterpart. Importantly, strain, in the m-plane structure, causes a larger splitting of the topmost valence band and the interband transition probability involving the 4th valence band was found to be highest. Overall, the m-plane structure offers higher spontaneous emission rate and internal quantum efficiency (IQE) as well as an improved fill-factor.
Style APA, Harvard, Vancouver, ISO itp.
29

Mantilla, Pérez Paola. "Multi-junction thin film solar cells for an optimal light harvesting". Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/406044.

Pełny tekst źródła
Streszczenie:
Thin film photovoltaics encompass a group of technologies able to harvest light within a few microns thickness. The reduced thickness allows a low cost of manufacture while making the films flexible and adaptable to different surfaces. This, combined with their low weight, positioned thin film solar cells as ideal candidates for building integrated photovoltaics. For the latter, organic solar cells (OSC) can provide a high quality semi-transparency that closely mimics the aesthetics of standard windows. Indeed, some unique features of organic solar cells make them the optimal solution for applications where standard Si technology cannot be used. However, for large-scale electricity production where efficiency is, perhaps, the most determining factor, newer thin film technologies like perovskites solar cells may be a more adequate option. At the moment of writing this thesis, state of the art efficiencies of single junction perovskites nearly double that of the best single junction organic solar cell. A limitation found in both technologies, especially in organics and to a lesser degree in perovskites, is the low mobility of the carriers. This, together with other processing shortcomings in the organic absorbers and perovskites limit their thickness to 100-130 nm, and 500-600 nm, respectively. In summary, light management must be an essential ingredient when designing device architectures to achieve the optimal performance in the specific application being considered. In this thesis, in order to achieve an optimal light harvesting and therefore increase the performance of thin film solar cells, we take two approaches. On one hand, we increase the total thickness of the absorber material used in the device without increasing the thickness of the single active material layer and, on the other hand, we combine complementary absorbers to cover a wider portion of the solar spectra. These approaches pose the double challenge of finding the optimal electromagnetic field distribution within a complicated multilayer structure containing two or more active layers, while at the same time implementing an effective charge collection or recombination in the intermediate layers connecting two adjacent sub-cells. In the case of OSC, we consider multi-junction cells where the same active material is used in all the junctions. This can be implemented by fabricating structures where the active layer thickness in each sub-cell does not exceed the 100 nm. For other types of thin film solar cells, we consider configurations using complementary absorbers. In both cases, but particularly in the former one, a systematic approach to optimize light absorption is needed. In order to obtain such optimal configurations, we implement an inverse integration approach combined with a transfer matrix calculation of the electric field. Furthermore, we develop several new approaches to optimize charge collection in the sub-cell interconnection layers which we apply to tandem, triple, 4-terminal and series-parallel configurations. The thesis has been organized into five chapters. Chapter 1 introduces concepts required for the development of the thesis work including the optical model. Chapter 2 describes the optical optimization and experimental implementation of current-matched multi-junction devices using PTB7:PC71BM, including applications. In order to profit from the advantage of electrically separated devices, Chapter 3 evaluates different types of 4-terminal architectures using PTB7:PC71BM and PTB7-Th:PC71BM. In one of the architectures we establish a serial-connection between sub-cells while in other we leave the sub-cells completely independent. Chapter 4 theoretically proposes a novel monolithic architecture combining perovskites and CIGS which does not require current-matching. Finally, in Chapter 5, an in-depth study of the semi-transparent inner electrodes is given that include vacuum-based and solution-processed layers.
La fotovoltaica de capa delgada engloba un grupo de tecnologías capaces de capturar la luz en tan sólo unos pocos nanómetros de espesor. Su bajo costo de manufactura, flexibilidad y bajo peso, hace a las capas delgadas candidatas ideales para la integración en edificios. En particular, las celdas orgánicas pueden proveer una transparencia de alta calidad similar a las ventanas convencionales irrealizable con tecnologías basadas en Silicio. Sin embargo, para la producción de electricidad a gran escala en donde la eficiencia es, tal vez, el factor determinante, existen nuevas tecnologías como las celdas solares de perovskita que pueden resultar más adecuadas. Al momento de escribir esta tesis, las eficiencias de celdas de perovskita de simple unión casi duplican la de las mejores celdas orgánicas de simple unión. Una limitante de ambas tecnologías, en especial de las celdas orgánicas y en menor medida de las perovskitas, es la baja movilidad de las cargas. Esta, junto a otras desventajas de los absorbentes orgánicos y perovskitas limita su espesor al rango de los 100 a los 130 nm, y entre los 500 a 600 nm, respectivamente. En resumen, el manejo de la luz debe constituir un ingrediente esencial para el diseño de los dispositivos, tal que se consiga un desempeño óptimo en la aplicación para la cual sean considerados. En esta tesis, con el fin de alcanzar un aprovechamiento óptimo de la luz y por ende aumentar el desempeño de las celdas solares de capa delgada, utilizamos dos enfoques. Por un lado, aumentamos el espesor total de material absorbente dentro del dispositivo sin incrementar el espesor de las capas actives individuales y por otro lado, combinamos absorbentes complementarios para cubrir una porción más amplia del espectro solar. Estos enfoques conllevan al doble reto de encontrar la distribución de campo electromagnético óptima dentro de una estructura compleja de multicapas con dos o más capas activas, junto a la implementación de una recolección o recombinación de cargas efectiva por parte de las capas intermedias encargadas de conectar dos subceldas adyacentes. En el caso de las celdas orgánicas, consideramos celdas de multiunión usando el mismo material activo para todas las subceldas. Para implementarlas, se realizan estructuras cuyas capas activas no excedan los 100 nm. También estudiamos configuraciones donde los materiales tienen absorciones complementarias usando perovskitas. En ambos casos, sobretodo en el primero, se requiere un método sistemático para optimizar el aprovechamiento de la luz. Para obtener las configuraciones óptimas empleamos una estrategia de integración inversa junto con un cálculo del campo eléctrico basado en el modelo de matriz de transferencia. Además, desarrollamos nuevas estrategias para optimizar la colección de cargas en las capas de interconexión de las subceldas aplicables a dispositivos tipo tandem, triple, 4-terminales y serie-paralelo.
Style APA, Harvard, Vancouver, ISO itp.
30

Haugan, Einar. "Colloidal Crystals as Templates for Light Harvesting Structures in Solar Cells". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-14541.

Pełny tekst źródła
Streszczenie:
Monolayer colloidal crystals are formed using silica- and polystyrene beads and used as templates in nanosphere lithography for creating various hexagonal periodic structures intended for light harvesting in crystalline silicon solar cells. Specifically, arrays of silver islands for plasmonic scattering, dimples for use as seeds in electrochemical etching, and silicon cylinders diffraction gratings are fabricated and investigated. Where suitable, optical measurements are done to complement the structural characterisation.
Style APA, Harvard, Vancouver, ISO itp.
31

Eisenlohr, Johannes [Verfasser]. "Light Trapping in High-Efficiency Crystalline Silicon Solar Cells / Johannes Eisenlohr". Konstanz : Bibliothek der Universität Konstanz, 2017. http://d-nb.info/1173087656/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Payne, David N. R. "The characterization and enhancement of light scattering for thin solar cells". Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/369416/.

Pełny tekst źródła
Streszczenie:
Photovoltaic (PV) power is one of the most promising technologies for worldwide clean and sustainable energy production and as the technology begins to enter the mainstream the requirement for efficient use of materials becomes increasingly important. However, reducing material thickness typically lowers optical absorption, leading to lower cell efficiency. One proven method for enhancing absorption in a thin device is by texturing interfaces, typically achieved in the top transparent conducting oxide (TCO) of a thin-film design. This works by scattering transmitted light and therefore increasing its effective optical path length within the absorber layer. However, introducing rough surfaces to a PV device can lead to fabrication issues and also increases surface recombination which is detrimental to the electrical characteristics of the end device. In recent years, possible alternatives to reliance on random texturing have been found through the use of optimized diffraction gratings and the plasmonic effects of metal nanoparticles. In this work, comprehensive optical characterization has been carried out on a range of samples using traditional and novel techniques. In particular, a custom built wavelength and angle resolved scattering (WARS) measurement system has been developed and used to determine key characteristics that would remain undetected by conventional measurements. The investigation of several commercial and experimental TCO films has been carried out and clear links between topography and optical characteristics have been determined. These textured surfaces have also been modelled using finite difference time domain (FDTD) simulations which have shown good agreement with measurement results. This has allowed for further investigation of the effects of TCO topography through simulation which has revealed that scattering is best enhanced by increasing the aspect ratio of the texture rather than the overall scale. Periodic arrays of silver nanoparticles incorporated into a thin-film solar cell back-reflector design have also been extensively characterized and modelled and shown to provide scattering through both diffraction and plasmonic mechanisms, leading to an increase in useful absorption by up to 140% in comparison to a planar device.
Style APA, Harvard, Vancouver, ISO itp.
33

Einzinger, Markus. "Excitonic spin engineering for solar cells and organic light-emitting diodes". Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/128410.

Pełny tekst źródła
Streszczenie:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2020
Cataloged from PDF of thesis.
Includes bibliographical references (pages 133-147).
The last two decades have seen renewed interest in molecular organic semiconductors. Since these materials support the formation of excitons, their behavior differs considerably from their inorganic counterparts. This gives rise to a variety of novel properties that can be exploited to create entirely new or improve existing optoelectronic devices. In this thesis, we explore excitonic concepts for improving both organic-light emitting diodes (OLEDs) and silicon solar cells. OLEDs are already commercially successful. However they still suffer from several major drawbacks. Multiexcited-state phenomena are believed to be the root cause of challenges like efficiency roll-off and degradation. The development of novel strategies to reduce exciton densities under heavy load is therefore highly desirable.
In this thesis, it is shown that triplet exciton lifetimes of thermally activated delayed fluorescence (TADF) emitter molecules can be manipulated in the solid state by exploiting intermolecular interactions. The external heavy-atom effect of brominated host molecules leads to increased spin-orbit coupling, which in turn enhances intersystem crossing rates in the guest molecule. Shorter triplet exciton lifetimes are observed, while high photoluminescence quantum yields (PLQYs) are maintained and emission spectra are essentially unaltered. A change in the intersystem crossing rate ratio due to increased dielectric constants leads to almost 50% lower triplet exciton densities in the emissive layer in the steady state and results in an improved onset of the PLQY roll-off at high excitation densities. Efficient OLEDs with better roll-off behavior based on these novel hosts are fabricated, demonstrating the suitability of this concept for real-world applications.
In addition, efficient and stable blue emitters for OLEDs are urgently needed for next-generation display and lighting applications. This thesis presents a tunable series of TADF emitter molecules. After pairing the iminodibenzyl donor with the triazine acceptor via a phenylene linker, dihedral angle tuning is employed to regulate the difference between the energy levels of singlet and triplet excited states. Enhanced reverse intersystem crossing rates are observed in response to increased methylation at the phenylene linker. PLQYs of up to 98% are achieved upon doping into a solid-state matrix. When incorporated in devices, the maximum external quantum efficiency is 28.3% for the emitter with the most favorable trade-off between singlet-triplet splitting and fluorescent oscillator strength.
This result highlights the general applicability of dihedral angle tuning, a molecular design strategy that can be used to improve the performance of donor-acceptor type TADF emitters without significantly changing their emission spectra. In contrast, contemporary solar cell technologies are dominated by silicon, an inorganic semiconductor. But when absorbing photons, silicon (like other semiconductors) wastes energy in excess of its bandgap. Reducing these thermalization losses is possible by sensitizing the silicon solar cell using singlet fission, a carrier multiplication phenomenon that occurs only in organic semiconductors. In this process, two triplet excitons are generated from a singlet exciton. In tetracene, those triplet excitons are energetically matched to the silicon bandgap. Transferring triplet excitons to silicon creates additional electron-hole pairs, promising to increase cell efficiencies from the single-junction limit of 29% to as high as 35%.
In this thesis we reduce the thickness of the protective hafnium oxynitride layer at the surface of a silicon solar cell to just eight angstroms, using electric-field-effect passivation to enable the efficient energy transfer of triplet excitons formed in tetracene. The maximum combined yield of the fission in tetracene and the energy transfer to silicon is around 133%. The processes at the interface are investigated using photoluminescent and magnetic field effect experiments, revealing the impact of different interlayer thicknesses. Finally, the thesis presents the first example of a singlet-fission-enhanced silicon solar cell, a breakthrough that establishes the potential of singlet exciton fission to increase the efficiencies of silicon solar cells and reduce the cost of the energy that they generate.
by Markus Einzinger.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Style APA, Harvard, Vancouver, ISO itp.
34

Zhou, Dayu. "Light-trapping enhancement in thin film solar cells with photonic crystals". [Ames, Iowa : Iowa State University], 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Knott, Andrew N. "3D printing of light trapping structures for dye-sensitised solar cells". Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/50058/.

Pełny tekst źródła
Streszczenie:
Converting solar energy directly into electricity as a clean and renewable energy resource is immensely important to solve the energy crisis and environmental pollution problems induced by the consumption of fossil fuels. Dye-sensitised solar cells have attracted a great deal of attention following their development in 1991. They provide a technically and economically credible alternative that could challenge the dominance of conventional p-n junction photovoltaic devices in the solar energy market. 3D printing and other additive manufacturing techniques allow the fabrication of geometrically complex end-use products and components in a variety of materials by using technologies that deposit material layer-by-layer. The additive manufacturing of optoelectronic devices is still in its infancy but has the potential to completely revolutionise the industry. Two-photon polymerisation is a technique used to fabricate 3D structures with resolutions down to a few hundred nanometres. The technique shows the ability to fabricate highly complex 3D structures of arbitrary shape with unprecedented levels of control. In this thesis the two-photon polymerisation 3D printing technique is used to fabricate TiO2 thin films of optimised 3D micro-design for use in DSSCs. Our 3D printed films have a considerable advantage over the conventional (random assembly) films, as they allow the implementation of optimised light trapping designs directly into the cell. Cells are characterised with scanning photocurrent microscopy with results showing these light trapping structures are able to improve photocurrent generation by up to approximately sim 9%$ when compared to conventional random assembly TiO2.
Style APA, Harvard, Vancouver, ISO itp.
36

Tiong, Vincent Tiing. "Hydrothermal synthesis and characterisation of Cu2ZnSnS4 light absorbers for solar cells". Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/78636/1/Vincent%20Tiing_Tiong_Thesis.pdf.

Pełny tekst źródła
Streszczenie:
This project has extended the knowledge in the hydrothermal synthesis of copper zinc tin sulphide (CZTS) semiconductor material which is regarded as one of the most promising light absorbing material for PV technologies. The investigation of various reaction parameters on the controlled synthesis of CZTS compound has provided important insight into the formation mechanism as well as the crystal growth behaviour of the material. CZTS nanocrystals with different crystal structure and particle size were synthesised throughout this project. The growth mechanism of CZTS crystals through a high temperature annealing treatment was also explored.
Style APA, Harvard, Vancouver, ISO itp.
37

Paudel, Naba Raj. "Stability Issues in Sputtered CdS/CdTe Solar Cells". University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1321639226.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Vandamme, Nicolas. "Nanostructured ultrathin GaAs solar cells". Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112111/document.

Pełny tekst źródła
Streszczenie:
L’amincissement des cellules solaires semi-conductrices est motivé par la réduction des coûts de production et l’augmentation des rendements de conversion. Mais en deçà de quelques centaines de nanomètres, il requiert de nouvelles stratégies de piégeage optique. Nous proposons d’utiliser des concepts de la nanophotonique et de la plasmonique pour absorber la lumière sur une large bande spectrale dans des couches ultrafines de GaAs. Nous concevons et fabriquons pour ce faire des structures multi-résonantes formées de réseaux de nanostructures métalliques. Dans un premier temps, nous montrons qu’il est possible de confiner la lumière dans une couche de 25 nm de GaAs à l’aide d’une nanogrille bidimensionnelle pouvant servir de contact électrique en face avant. Nous analysons numériquement les modes résonants qui conduisent à une absorption moyenne de 80% de la lumière incidente entre 450 nm et 850 nm. Ces résultats sont validés par la fabrication et la caractérisation de super-absorbeurs ultrafins multi-résonants. Dans un second temps, nous appliquons une approche similaire dans le but d’obtenir des cellules photovoltaïques dix fois plus fines que les cellules GaAs records, avec des absorbeurs de 120 nm et 220 nm seulement. Un miroir arrière nanostructuré en argent, associé à des contacts ohmiques localisés, permet d’améliorer l’absorption tout en garantissant une collecte optimale des porteurs photo-générés. Nos calculs montrent que les densités de courant de court-circuit (Jsc) dans ces structures optimisées peuvent atteindre 22.4 mA/cm2 et 26.0 mA/cm2 pour les absorbeurs d’épaisseurs respectives t=120 nm et t=220 nm. Ces performances sont obtenues grâce à l’excitation d’une grande variété de modes résonants (Fabry-Pérot, modes guidés,…). En parallèle, nous avons développé un procédé de fabrication complet de ces cellules utilisant la nano-impression et le transfert des couches actives. Les mesures montrent des Jsc records de 17.5 mA/cm2 (t=120 nm) et 22.8 mA/cm2 (t=220 nm). Ces résultats ouvrent la voie à l’obtention de rendements supérieurs à 20% avec des cellules solaires simple jonction d’épaisseur inférieure à 200 nm
The thickness reduction of solar cells is motivated by the reduction of production costs and the enhancement of conversion efficiencies. However, for thicknesses below a few hundreds of nanometers, new light trapping strategies are required. We propose to introduce nanophotonics and plasmonics concepts to absorb light on a wide spectral range in ultrathin GaAs layers. We conceive and fabricate multi-resonant structures made of arrays of metal nanostructures. First, we design a super-absorber made of a 25 nm-thick GaAs slab transferred on a back metallic mirror with a top metal nanogrid that can serve as an alternative front electrode. We analyze numerically the resonance mechanisms that result in an average light absorption of 80% over the 450nm-850nm spectral range. The results are validated by the fabrication and characterization of these multi-resonant super-absorbers made of ultrathin GaAs. Second, we use a similar strategy for GaAs solar cells with thicknesses 10 times thinner than record single-junction photovoltaic devices. A silver nanostructured back mirror is used to enhance the absorption efficiency by the excitation of various resonant modes (Fabry-Perot, guided modes,…). It is combined with localized ohmic contacts in order to enhance the absorption efficiency and to optimize the collection of photogenerated carriers. According to numerical calculations, the short-circuit current densities (Jsc) can reach 22.4 mA/cm2 and 26.0 mA/cm2 for absorber thicknesses of t=120 nm and t=220 nm, respectively. We have developed a fabrication process based on nano-imprint lithography and on the transfer of the active layers. Measurements exhibit record short-circuit currents up to 17.5 mA/cm2 (t=120 nm) and 22.8 mA/cm2 (t=220 nm). These results pave the way toward conversion efficiencies above 20% with single junction solar cells made of absorbers thinner than 200 nm
Style APA, Harvard, Vancouver, ISO itp.
39

Chen, Hung-Ling. "Ultrathin and nanowire-based GaAs solar cells". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS355/document.

Pełny tekst źródła
Streszczenie:
Confiner la lumière dans un volume réduit d'absorbeur photovoltaïque offre de nouvelles voies pour les cellules solaires à haute rendement. Ceci peut être réalisé en utilisant des nanostructures pour le piégeage optique ou des nanofils de semi-conducteurs. Dans une première partie, nous présentons la conception et la fabrication de cellules solaires ultra-minces (205 nm) en GaAs. Nous obtenons des résonances multiples grâce à un miroir arrière nanostructuré en TiO2/Ag fabriqué par nanoimpression, résultant en un courant de court-circuit élevé de 24,6 mA/cm². Nous obtenons le record d’efficacité de 19,9%. Nous analysons les mécanismes des pertes et nous proposons une voie réaliste vers un rendement de 25% en utilisant un absorbeur de GaAs de 200 nm d'épaisseur seulement. Dans une deuxième partie, nous étudions les propriétés de nanofils en GaAs crûs sur substrats Si et nous explorons leur potentiel comme absorbeur photovoltaïque. Un dopage élevé est souhaité dans les cellules solaires à nanofils en jonction coeur-coquille, mais la caractérisation à l'échelle d'un nanofil unique reste difficile. Nous montrons que la cathodoluminescence (CL) peut être utilisée pour déterminer les niveaux de dopage de GaAs de type n et p avec une résolution nanométrique. Les semi-conducteurs III-V de type n présentent une émission décalée vers le bleu, à cause du remplissage de la bande de conduction, tandis que les semi-conducteurs de type p présentent une émission décalée vers le rouge due à la réduction du gap. La loi de Planck généralisée est utilisée pour fitter tout le spectre et ainsi évaluer quantitativement le niveau de dopage. Nous utilisons également la polarimétrie de CL pour déterminer sélectivement les propriétés de phases wurtzite/zinc-blende d'un nanofil unique. Nous montrons enfin des cellules solaires fonctionnelles à nanofils de GaAs. Ces travaux ouvrent des perspectives vers une nouvelle génération de cellules photovoltaïques
Confining sunlight in a reduced volume of photovoltaic absorber offers new directions for high-efficiency solar cells. This can be achieved using nanophotonic structures for light trapping, or semiconductor nanowires. First, we have designed and fabricated ultrathin (205 nm) GaAs solar cells. Multi-resonant light trapping is achieved with a nanostructured TiO2/Ag back mirror fabricated using nanoimprint lithography, resulting in a high short-circuit current of 24.6 mA/cm². We obtain the record 1 sun efficiency of 19.9%. A detailed loss analysis is carried out and we provide a realistic pathway toward 25% efficiency using only 200 nm-thick GaAs absorber. Second, we investigate the properties of GaAs nanowires grown on Si substrates and we explore their potential as active absorber. High doping is desired in core-shell nanowire solar cells, but the characterization of single nanowires remains challenging. We show that cathodoluminescence (CL) mapping can be used to determine both n-type and p-type doping levels of GaAs with nanometer scale resolution. n-type III-V semiconductor shows characteristic blueshift emission due to the conduction band filling, while p-type semiconductor exhibits redshift emission due to the dominant bandgap narrowing. The generalized Planck’s law is used to fit the whole spectra and allows for quantitative doping assessment. We also use CL polarimetry to determine selectively the properties of wurtzite and zincblende phases of single nanowires. Finally, we demonstrate successful GaAs nanowire solar cells. These works open new perspectives for next-generation photovoltaics
Style APA, Harvard, Vancouver, ISO itp.
40

Gresser, Roland. "Azadipyrromethenes as near-infrared absorber materials for organic solar cells". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-78871.

Pełny tekst źródła
Streszczenie:
Organic solar cells have the potential to become a low-cost photovoltaic technology. One approach to further increase the device efficiency aimsvto cover the near-infrared region of the sunvspectrum. However, suitable absorber materials are rare. This thesis focuses on the material class of aza-bodipy and dibenzo-aza-bodipy as near-infrared absorber materials for organic solar cells. Besides the synthesis of novel thiophene-substituted aza-bodipys, azadiisoindomethenes were prepared by the addition of Grignard reagents to phthalodinitrile an subsequent reduction with formamide. Starting from these azadiisoindomethenes as precursors, complexes with borondifluoride, boroncatechole and transition metals were synthesized. The optical and electrochemical properties of all compounds prepared were investigated by experimental and theoretical methods. The (dibenzo-)aza-bodipys are characterized by their electronic structure, comprising a central electron acceptor core and peripheral electron donor units. The substituents at the donor units offer a stronger impact on the HOMO energy than on the LUMO energy. Electron donating substituents at the donor units result in an overall decreased HOMO-LUMO gap. This allows to redshift the absorption maximum up to 800 nm. The corresponding dibenzo-analogues already demonstrate a bathochromic shift of the absorption compared to the (non-annulated) aza-bodipys. Yet, the central acceptor is weakened and a further redshift by substituents is less distinct. The compounds can be thermally evaporated in high vacuum. The required thermal stability is increased in some cases by boroncatechol compared to borondifluoride complexes, without significant influence on the optical and electrochemical properties. Besides the characterization of the molecular properties, promising materials were evaluated in thin fifilms and solar cell devices. The charge carrier mobility in the measured compounds were found to be between 10E-6 and 10E-4 cm2V-1s-1. The charge transport parameters were calculated on the basis of obtained single crystal structures. It was found that a high charge carrier mobility may be attributed to a better molecular overlap and a short intermolecular distance in the corresponding solid state structure. Selected materials were characterized in organic solar cells. In solution processed devices, the dibenzo-aza-bodipys reached efficiencies of 1.6 % and 2.1 %, as donor materials in combination with PC61BM and PC71BM as acceptor. The main limiting factor in these devices turned out to be the low fill factor of 30 %. From a series of vacuum processed devices with aza-bodipys and dibenzo-aza-bodipys, increased voltages were obtained with decreasing HOMO energy of the bodipy derivatives. A suitable near-infrared absorbing dibenzo-aza-bodipy exhibited a contribution to the photocurrent from 750 - 950 nm
Die organische Photovoltaik hat das Potential eine kostengünstige Solarzellentechnologie zu werden. Ein Ansatz die Effizienz weiter zu steigern besteht darin den aktiven Spektralbereich in den nahen Infrarotbereich zu erweitern. Bisher gibt es jedoch nur wenige geeignete Materialien. In dieser Arbeit werden Verbindungen aus der Materialklasse der Aza-Bodipy und Dibenzo-Aza-Bodipy als Absorbermaterialien für den nahen Infrarotbereich zur Verwendung in organischen Solarzellen untersucht. Neben der Synthese von neuen Thiophen-substituierten Aza-Bodipys wurden Azadiisoindomethine durch die Addition von Grignardverbindungen an Phthalodinitril und anschließender Reduktion mit Formamid dargestellt. Ausgehend von den Azadiisoindomethinen sind neue Bordifluorid, Borbrenzcatechin und Übergangsmetallkomplexe synthetisiert worden. Alle Substanzen sind mit experimentellen und theoretischen Methoden auf ihre optischen und elektrochemischen Eigenschaften hin untersucht worden. Die elektronische Struktur der (Dibenzo-)Aza-Bodipys ist charakterisiert durch periphere Elektronendonoreinheiten um einen zentralen Elektronenakzeptor. Die langwelligste Absorptionsbande kann in beiden Systemen durch Elektronen schiebende Gruppen an den Donoreinheiten bathochrom, auf über 800 nm verschoben werden. Die Ursache liegt in einem stärkeren Einfluss der Substituenten auf das HOMO als auf das LUMO und einem damit einhergehenden stärkeren Anstieg der HOMO-Energie woraus eine verkleinerte HOMO-LUMO Lücke resultiert. Die Dibenzo-Aza-Bodipys zeichnen sich durch eine rotverschobene Absorption gegenüber den (nicht benzannulierten) Aza-Bodipys aus. Jedoch ist der Akzeptor in den Dibenzo-Aza-Bodipys abgeschwächt, so dass die Rotverschiebung durch die selben Substituenten weniger stark ausgeprägt ist und die Energieniveaus tendenziell höher liegen. Die Verbindungen lassen sich thermisch im Vakuum verdampfen. Die für das Verdampfen wichtige thermische Stabilität, kann durch Austausch von Bordifluorid mit Borbrenzcatechol erhöht werden, ohne die optischen und elektronischen Eigenschaften wesentlich zu beeinflussen. Neben der Charakterisierung der molekularen Eigenschaften, sind einige Verbindungen im Dünnfifilm auf ihre elektrischen Eigenschaften und in Solarzellen untersucht worden. Die Ladungsträgerbeweglichkeit liegt bei den gemessenen Verbindungen zwischen 10E-6 und 10E-4 cm2V-1s-1. Durch Berechnung der Ladungstransportparameter auf Basis erhaltener Kristallstrukturen ist eine höhere Beweglichkeit auf eine günstigere Packung und einen geringeren intermolekularen Abstand zurückgeführt worden. Ausgewählte Verbindungen sind als Donormaterialien in organischen Solarzellen charakterisiert worden. Aus Lösungsmittel prozessierte Solarzellen mit Dibenzo-Aza-Bodipys erreichen eine Effifizienz von 1.6 % mit PC61BM, und 2.1 % mit PC71BM als Akzeptor. Der Effizienz limitierende Faktor ist hierbei der niedrige Füllfaktor von ca. 30 %. In vakuumprozessierten Solarzellen mit planarem Dono-Akzeptor-Übergang von Aza-Bodipys und Dibenzo-Aza-Bodipys hat sich gezeigt, dass die erhaltene Spannung mit abnehmender HOMO Energie der Materialien gesteigert wird. Ein geeignetes Dibenzo-Aza-Bodipy Material ist mit einen Beitrag zum Photostrom im nahen Infrarotbereich, von 750 - 950 nm, gezeigt worden
Style APA, Harvard, Vancouver, ISO itp.
41

Ottesen, Petter. "Processing and Characterisation of Diatoms for Light Harvesting Materials in Solar Cells". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-16334.

Pełny tekst źródła
Streszczenie:
By applying a texture to the front surface of solar cells, less light may be reflected and the incoming light may be given a longer path length inside the solar cell causing a better light absorbance for the solar cell. The textured layer is today made by etching with an acidic etch with a large part hydrogen fluoride. In the future a more environmental approach for creating textured solar cells may be favoured. There are many ways of creating textured surfaces, one of them are by imprinting the surface by a template, and remove the template when the process is completed.In this project the diatom species Coscinodiscus walesii and an undefined Coscinodiscus species were cleaned and processed for investigation. The work done can be divided into four tasks. The first was characterisation and investigation of the pore structure. The second were manufacturing and characterisation of gold for use as templates. The third were deposition and characterisation of thin films of silicon and silicon nitride on diatom frustules. The last part were to make structures are very similar to solar cells with diatom frustules incorporated into them.The diatom frustules were characterised by SEM and the pore structure were cut through with FIB to characterise the structure. There were structural differences between the two species. The Coscinodiscus walesii was grown in a cultivation chamber, and lacked the circular inner pore structure which the undefined Coscinodiscus species had. This was the only real difference between the two species.On the cultivated species were deposited a gold film, which a small rectangle were lifted off by a tungsten needle in FIB. The small rectangle were characterised with the SEM-column in a dual beam FIB. Pore structures down to 40 nm were replicated by the gold film lifted off the frustule. By depositing a relatively thick film of gold on a glass substrate covered with diatom frustules and dissolving the glass substrate and diatom frustules with hydrogen fluoride, a template were made with a replication of the diatom frustule pore structure.Silicon and silicon nitride were deposited on diatom frustules and characterised with FIB to investigate how those materials followed the frustule topography. A good conformity of films made of those materials was confirmed, and 4 different samples which were similar to solar cells were manufactured and characterised by light microscopy, SEM and FIB. Two samples were made to be similar to crystalline silicon solar cells. One had dried frustules on top of a silicon surface and the entire surface of the sample were coated with silicon nitride, a blue colour were observed in the entire surface and the silicon nitride had also been deposited on the diatom frustules. For the other sample similar to crystalline silicon solar cells another layer were deposited between the frustule and the silicon substrate. The double silicon layer made the sample surface yellow, the diatom frustules did not get darker due to a layer above and a layer beneath them. Only in some places where the frustules had loosened from the sample the sample were blue as the silicon nitride layer were the same as a single layer of silicon nitride. For the last two samples, thin film solar cell structures based on amorphous silicon deposited with PECVD were made. A sample there a aluminum coating were deposited on a glass substrate and diatom frustules were dried on top of the aluminum coating, afterwards a 5 µm thick film of amorphous silicon were deposited. SEM images showed that the film were distributed even across a diatom frustule and a light microscopy investigation showed that light were spread when it hit the diatom frustules, hence creating a longer mean path through the solar cell.
Style APA, Harvard, Vancouver, ISO itp.
42

Ulbrich, Carolin [Verfasser]. "Spectral and directional dependence of light-trapping in solar cells / Carolin Ulbrich". Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2011. http://d-nb.info/1018190570/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Kwarikunda, Nicholas. "On the characterisation of solar cells using light beam induced current measurements". Thesis, Nelson Mandela Metropolitan University, 2015. http://hdl.handle.net/10948/11147.

Pełny tekst źródła
Streszczenie:
The presence of inhomogeneities in semiconductor materials used to fabricate solar cell devices may result in spatial non uniformities in the device properties which may affect current generation in these devices. Besides, current reducing defects such as inclusions, local shunts and optical blockages may be introduced during the various device manufacturing processes which may adversely affect the performance and overall efficiency of solar cells. Diagnostic techniques are therefore needed to identify these defects so as to improve the production technology. This thesis presents the Light Beam Induced Current (LBIC) technique for mapping spatial non uniformities in solar cell devices. The LBIC is a non destructive characterisation technique that uses a focused light beam to raster scan a solar cell surface as the photo-generated current is recorded as a function of position to generate a photo-response map. The technique was used to obtain photoresponse maps for a mc-Si, Back contact Back junction (BC-BJ) silicon solar cell and the InGaP/InGaAs/Ge concentrating triple junction (CTJ) solar cell from which various local current reducing defects were mapped. A reflection signal detector was incorporated into the LBIC measurement system to enable us distinguish between optical blockages on the cell surface and current reducing defects within the solar cell devices. By dynamically biasing the solar cell devices, the electrical activity of the identified defects was investigated and also point-by-point current-voltage (I-V) characteristics were obtained. An interval division algorithm was applied to the measured point-by-point I-V characteristics to extract device and performance parameters from which device and performance parameter uniformity of the devices were mapped. Dark and full cell solar illumination I-V characteristics were also measured to extract device parameters. Analysis of extracted parameters revealed differences between extracted dark and illuminated device parameters which was attributed to departure from the superposition principle due to non-linearity of the semiconductor device equations with respect to carrier concentration. An investigation into the effect of illumination intensity on the I-V parameters of a spot illuminated BC-BJ Si solar cell showed a linear increase and a logarithmic increase of the short circuit current and open circuit voltage respectively with intensity while the series resistance decreased with intensity, which was attributed to increase in conductivity of the active layer. The ideality factor and saturation current were observed to increase while the shunt resistance initially increased before decreasing at higher intensity levels. Under monochromatic illumination, the photo-response of the BC-BJ Si cell was higher at 785nm than at 445nm due to low absorption coefficient of Si for longer wavelength radiations, resulting in carrier generation within the bulk, where there is a higher probability of carriers being collected at the p-n junction before they recombine. Under solar illumination, as the spectral content was altered using long pass colour filters with cut off wavelengths of 610nm and 1000nm, the performance parameters were observed to decrease and this was mainly due to decrease in intensity. For the CTJ solar cell, however, blocking of radiations below 610nm resulted in current mismatch that severely degraded the short circuit current (Isc). The current mismatch affected the extracted device and performance parameters. With a 1000nm long pass filter, a dark I-V was obtained since only the bottom Ge subcell was activated.
Style APA, Harvard, Vancouver, ISO itp.
44

Williams, Jonathan H. T. "Finite element simulations of excitonic solar cells and organic light emitting diodes". Thesis, University of Bath, 2008. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445404.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Martínez-Denegrí, Sánchez Guillermo. "Light harvesting and energy efficiency in perovskite solar cells and their applications". Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672666.

Pełny tekst źródła
Streszczenie:
The environmental issues associated with the use of conventional fuels necessitates the utilisation of renewable energy sources, as well as the implementation of energy efficient designs, in order to decrease electricity consumption. Photovoltaic (PV) technology can be employed for both approaches by converting not only natural but, also, artificial light into electricity. Among the different emerging PVs, perovskites achieve the highest power conversion efficiency, providing a widely tuneable bandgap with minimum open circuit losses. Moreover, their fabrication uses readily available materials, and does not necessarily require either the use of high temperature processes or vacuum deposition techniques. In this thesis, we enhance light harvesting in perovskite solar cells, and approach the energy efficiency concept through their optimised fabrication and integration in light selective structures. This is accomplished by the implementation of optical and material strategies applied to specific perovskite solar cell designs. The results prove that such strategies provide enhanced light absorption and optimal PV performance in low temperature devices, and enable the recycling of light into electricity for alternative photonic applications. The approaches presented could be utilised in future procedures to decrease the amount of Pb employed in perovskite solar cells, and to reduce the energy consumption during fabrication and the operation of other optoelectronic devices. The thesis is organised into four chapters. Chapter 1 serves as an introduction, where the current energy situation and PV technology are analysed, together with an insight into light harvesting and energy efficiency in perovskite solar cells. In Chapter 2, we demonstrate the employment of a periodic structure to propagate ergodic light in order to increase light absorption in perovskite solar cells, as would happen by employing randomly textured surfaces. This structure serves as a tool to decrease the Pb content used in perovskite solar cells, since 30% less material can be used to obtain a solar cell with equal performance. Then, in Chapter 3, the same periodic configuration with a thin film structure deposited on its surface is applied as a waveguide, which is also able to transmit polarised light. Moreover, two perovskite solar cells integrated on the sides recycle the non-transmitted light into electricity, increasing the energy efficiency of the optical process, with further application in liquid crystal displays (LCDs). Finally, in Chapter 4, we demonstrate the suitable application of a nanoparticle bilayer made of one layer of SnO2 and another of TiO2 as n-type materials in perovskite solar cells. These types of devices, based on low temperature processes, are proven to perform better than those containing one type of nanoparticles, especially in semi-transparent devices. In such devices we achieved an enhancement in performance of up to 30% for solar cells based on extremely thin active layers.
Los problemas medioambientales asociados al uso de combustibles convencionales requieren del uso de fuentes de energía renovables, así como de la implementación de diseños eficientemente energéticos para reducir el consumo de energía. La tecnología fotovoltaica puede emplearse para cubrir ambas estrategias convirtiendo no sólo la luz natural, sino también la artificial, en electricidad. De entre las diferentes tecnologías fotovoltaicas emergentes, las perovskitas alcanzan la más alta eficiencia en conversión de potencia, al mismo tiempo que proporcionan una banda de energía prohibida ampliamente ajustable con pérdidas mínimas de tensión de circuito abierto. Además, su fabricación usa materiales abundantemente disponibles, y no requiere necesariamente de procesos a alta temperatura ni de técnicas de deposición en vacío. En esta tesis, mejoramos la colección de luz en celdas de perovskitas, a la vez que abordamos el concepto de eficiencia energética a través de una fabricación optimizada y su integración en estructuras selectivas de luz. Esto es conseguido gracias a la implementación de estrategias ópticas y materiales aplicadas a diseños específicos de celdas solares de perovskita. Los resultados demuestran que tales estrategias proporcionan una colección de luz y un rendimiento fotovoltaico mayor aplicable a dispositivos fabricados a baja temperatura, y permiten el reciclaje de luz en electricidad para aplicaciones fotónicas alternativas. Las técnicas presentadas podrían ser utilizadas en procedimientos futuros para disminuir la cantidad de Pb empleado en celdas solares de perovskita, y para reducir el consumo de energía durante su fabricación y el funcionamiento de otros dispositivos optoelectrónicos. La tesis está organizada en cuatro capítulos. El Capítulo 1 sirve como una introducción, donde la actual situación energética y la tecnología fotovoltaica son analizadas junto a una descripción de la recolección de luz y la eficiencia energética en celdas solares de perovskita. En el Capítulo 2, demostramos el uso de una estructura periódica para propagar luz ergódicamente y así aumentar la absorción de luz en las celdas solares de perovskita, de manera equivalente a lo que se obtendría usando superficies aleatoriamente texturizadas. Esta estructura sirve como herramienta para reducir el contenido de Pb empleado en celdas solares de perovskita, ya que se puede utilizar 30% menos de material para obtener una celda solar con un rendimiento equivalente. En el Capítulo 3, la misma configuración periódica con una estructura de capa fina depositada en su superficie es empleada como guía de luz, la cual es, además, capaz de transmitir luz polarizada. Además, dos celdas de perovskita integradas en sus laterales reciclan la luz no transmitida en electricidad, incrementando la eficiencia energética del proceso óptico, lo cual podría tener futura aplicación en pantallas de cristal líquido. Finalmente, en el Capítulo 4, demostramos la aplicación de una bicapa de nanopartículas hecha de una capa de SnO2 y otra de TiO2 como materiales de tipo n en celdas solares perovskita. Este tipo de dispositivos, basados en procesos a baja temperatura, funcionan mejor que los que integran un único tipo de nanopartículas, especialmente en dispositivos semitransparentes. En tales dispositivos conseguimos un funcionamiento hasta 30% mejor para celdas solares basadas en capas activas extremadamente finas.
Fotònica
Style APA, Harvard, Vancouver, ISO itp.
46

D'AMICO, LILIANA. "Light Management Strategies and Nanostructuring Techniques to Improve Efficiency in Solar Cells". Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2015. http://hdl.handle.net/2108/202323.

Pełny tekst źródła
Streszczenie:
The demand for cheap and clean energy sources, not based on fossil fuels and having low impact on the environment, is becoming nowadays an urgent matter. In this regard photovoltaic (PV) power generation technology is one of the most promising. A large variety of photovoltaic devices, or most commonly “solar cells”, is currently on market but all of them share an identical research aspect: the need of increase their photovoltaic conversion efficiency in a cost effective way. In addition to improving the electronic properties of the materials used for solar devices construction, there is a very promising approach towards the efficiency enhancement based on the so called Light Management (LM) techniques. LM techniques are based on the introduction of particular photonic nanostructures which depending on the positioning along the cell architecture and depending on their morphological characteristics, can serve for the obtaining of different phenomena including: diffractive effects, modulation of the refractive index, coupling to waveguide modes through surface structuring, and modification of the photonic band structure of the device. Anyway, the goal of LM concept is the enhance of the probability of photons interaction with cell active layer for the generation of an increased quantity of charge carriers involved in the photovoltaic process. Continuous improvement in nanotechnology manufacturing field have led to a great attention for LM techniques applied to photovoltaics and the present work has given a contribute to this interesting field, focusing on a particular type of PV device, Dye Sensitized Solar Cells (DSC). A Bragg grating with defined morphological parameters (theoretically predicted by FEM calculation) has been realized on a high performance photoresist by means of Laser Interference Lithography (LIL) and then replicated on a mesoporous TiO2 layer. Replication process takes place by means of a low-cost Soft Lithographic (SL) process which exploits a PDMS mold for pattern transferring from one layer to the other. The nanostructures good quality replication, over a large area have been demonstrated by microscopic analysis. The nanostructured TiO2 layer was then soaked into a dye and the DSC cell assembled. PV properties of the build-up nanostructured cell and those of a traditional bare one, both realized following identical experimental procedures and differing only for the Bragg grating presence, were compared. Results confirmed an enhanced efficiency, in term of IPCE, of 31% for the nanostructured cell. Therefore, the most important achievement of this study has been the successful easy and low cost TiO2 nanostructuring. The second part of this work concerns on preliminary guidelines for the realization and ordering of different type of nanostructures. In particular a LIL method for 2D Bragg grating structure production has been proposed to be employed for photovoltaic antireflective coating. A transfer method that exploit PDMS mold to align gold nanoparticles (NPs) on a PEDOT:PSS layer of an organic solar cell was applied. The deposition and ordering of such Au NPs along specific patterns, permits to combine the photonic effect, whose effectiveness has been demonstrated in the first part of the work, with the plasmonic one. The presented result demonstrated the great potential of low-cost soft lithographic procedures in LM field.
Style APA, Harvard, Vancouver, ISO itp.
47

Wang, Qiwei. "New functional molecules and polymers for organic light-emitting diodes and solar cells". HKBU Institutional Repository, 2010. http://repository.hkbu.edu.hk/etd_ra/1200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Grigioni, I. "DEVELOPMENT OF PHOTOCATALYTIC MATERIALS FOR SOLAR LIGHT CONVERSION INTO FUELS". Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/333066.

Pełny tekst źródła
Streszczenie:
Solar light possesses a large amount of energy. The sun provides to our planet an intense flux of high energetic photons capable to promote extremely up-hill reactions, such as the photosynthetic fixation of CO2 in biological systems. This energy flow drives life on Earth. My PhD thesis is focused on solar driven conversion processes. While in the first year I principally investigated the photocatalytic reduction of CO2 with TiO2-based materials. In the second year I started to explore new promising visible light harvesting materials and in particular I worked on CdSe quantum dots synthesis and on their use as photocatalysts for hydrogen production under visible light, with special interest on the size dependent recombination of the photogenerated. Finally, during my stage by Professor Kamat’s laboratory at Notre Dame University (Indiana, US), I started to work on the use of WO3/BiVO4 heterojunction photoanodes, for photoelectrocatalytic applications, and especially on charge carriers dynamics through transient absorption spectroscopy measurements. A short overview of the main themes treated during my PhD is outlined below. 1st year 1. Photocatalytic tests on TiO2 based materials in the photoassisted reactions of CO2 reduction and steam reforming of methanol, as a part of the research project FotoRiduCO2 PON01_02257. 2nd year 2. Synthesis and characterization of CdSe quantum dots with different size and their application in photocatalytic H2 production under visible light irradiation. 3. Preparation of WO3, BiVO4 and WO3/BiVO4 photoanodes for photoelectrochemical water splitting application and their study with transient absorption techniques. 3rd year 4. Preparation and characterization through femtosecond transient absorption spectroscopy of BiVO4 and WO3/BiVO4 films with variable BiVO4 thickness. The use of different pump energy allowed to suggest a new optical transition model that accounts for the electron transfer paths between the two oxides. Photoelectrochemical experiments validate the proposed model.
Style APA, Harvard, Vancouver, ISO itp.
49

Cao, Zhixiong. "Silver nanoprisms in plasmonic organic solar cells". Thesis, Ecole centrale de Marseille, 2014. http://www.theses.fr/2014ECDM0015/document.

Pełny tekst źródła
Streszczenie:
On constate une forte demande mondiale d' énergie propre et renouvelable en raison de la consommation rapide des combustibles fossiles non renouvelables et l'effet de serre qui en résulte. Une solution prometteuse pour produire une énergie propre et renouvelable est d'utiliser des cellules solaires pour convertir l' énergie solaire directement en électricité. Comparativement à leurs homologues inorganiques, les cellules solaires organiques (OSCs) sont maintenant intensivement étudiées en raison des avantages tels que le poids léger, la flexibilité, la compatibilité avec les procédés de fabrication à faibles coûts. Malgré ces avantages, l'efficacité de conversion (PCE) des OSCs doit encore être améliorée pour la commercialisation à grande échelle. Les cellules solaires organiques sont réalisées en pile de couches minces comprenant des électrodes, la couche de transport d' électrons, la couche de polymère actif et la couche de transport de trous. Dans cette étude, nous sommes concernés par la couche de PEDOT:PSS qui est couramment utilisée comme une couche tampon entre l'électrode anodique et la couche de polymère actif de cellules solaires organiques. Cette étude vise à intégrer différentes concentrations de nanoprismes (NPSMs) d'argent de taille sub-longueur d'onde dans du PEDOT: PSS afin de profiter de leurs propriétés optiques uniques nées de résonances de plasmons de surface localisées (LSPR) pour améliorer la collecte lumineuse et l'efficacité de génération de charge en optimisant l' absorption et la diffusion de la lumière. Nous avons constaté que les facteurs clés qui contrôlent les performances des cellules solaires plasmoniques comprennent non seulement les propriétés optiques, mais également les propriétés structurelles et électriques des couches hybrides de PEDOT:PSS comprenant des NPSMs d' Ag. D'une part, l'ajout de NPSMs d' Ag conduit ¨¤ (1) une augmentation de l'absorption optique; (2) de la diffusion de la lumière ¨¤ de grands angles ce qui pourrait conduire ¨¤ un meilleur piégeage de la lumière dans les OSCs. D'autre part, (1) la rugosité de surface est augment¨¦e en raison de la formation d'agglomérats de NPSMs d' Ag, ce qui conduit ¨¤ une meilleure efficacité de collecte de charge; (2) la résistance globale des films hybrides est également augment¨¦e en raison de l'excès de PSS introduit par les NPSMs d' Ag incomplètement purifiées, inférieur courant de court-circuit (Jsc) qui en résulte; (3) les Ag NPSMs et leurs agglomérats ¨¤ l'interface PEDOT:PSS/couche photo-active pourraient agir comme des centres de recombinaison, conduisant ¨¤ une réduction de la résistance de shunt, du Jsc et de la tension en circuit ouvert (Voc). Afin de résoudre partiellement l'inconvénient (2) et (3), en intégrant des NPSMs d¡¯Ag davantage purifiés et une petite quantité de glycérol dans le PEDOT:PSS, la résistance des couches hybrides de PEDOT:PSS-Ag-NPSMs peut ¨être réduite à une valeur comparable ou inférieure ¨¤ celles couches vierges. Les futurs progrès en chimie de surface colloïdale et l'optimisation sur le processus d'incorporation des nanoparticules seront nécessaires pour produire des cellules solaires organiques plasmoniques de meilleures performances
Nowadays there has been a strong global demand for renewable and clean energy due to the rapid consumption of non-renewable fossil fuels and the resulting greenhouse effect. One promising solution to harvest clean and renewable energy is to utilize solar cells to convert the energy of sunlight directly into electricity. Compared to their inorganic counterparts, organic solar cells (OSCs) are now of intensive research interest due to advantages such as light weight, flexibility, the compatibility to low-cost manufacturing processes. Despite these advantages, the power conversion efficiency (PCE) of OSCs still has to be improved for large-scale commercialization. OSCs are made of thin film stacks comprising electrodes, electron transporting layer, active polymer layer and hole transporting layer. In this study, we are concerned with PEDOT:PSS layer which is commonly used as a buffer layer between the anodic electrode and the organic photoactive layer of the OSC thin film stack. We incorporated different concentrations of silver nanoprisms (NPSMs) of sub-wavelength dimension into PEDOT:PSS. The purpose is to take advantage of the unique optical properties of Ag MPSMs arisen from localized surface plasmon resonance (LSPR) to enhance the light harvest and the charge generation efficiency by optimizing absorption and scattering of light in OSCs. We found that the key factors controlling the device performance of plasmonic solar cells include not only the optical properties but also the structural and electrical properties of the resulting hybrid PEDOT:PSS-Ag-NPSM-films. On one hand, the addition of Ag NPSMs led to (1) an increased optical absorption; (2) light scattering at high angles which could possibly lead to more efficient light harvest in OSCs. On the other hand, the following results have been found in the hybrid films: (1) the surface roughness was found to be increased due to the formation of Ag agglomerates, leading to increased charge collection efficiency; (2) the global sheet resistance of the hybrid films also increases due to the excess poly(sodium styrenesulphonate) introduced by incompletely purified Ag NPSMs, resulting in lower short circuit current (Jsc); (3) the Ag nanoprisms and their agglomerates at the PEDOT:PSS/photoactive layer interface could act as recombination centers, leading to reductions in shunt resistance, Jsc and open circuit voltage (Voc). In order to partially counteract the disadvantage (2) and (3), by incorporating further purified Ag NPSMs and/or a small amount of glycerol into PEDOT:PSS, the sheet resistance of hybrid PEDOT:PSS-Ag-NPSM-films was reduced to a resistance value comparable to or lower than that of pristine film
Style APA, Harvard, Vancouver, ISO itp.
50

Bezuidenhout, Lucian John-Ross. "On the characterisation of photovoltaic device parameters using light beam induced current measurements". Thesis, Nelson Mandela Metropolitan University, 2015. http://hdl.handle.net/10948/d1020282.

Pełny tekst źródła
Streszczenie:
Light Beam Induced Current (LBIC) measurement is a non-destructive technique used to perform localized characterization of solar cells using a light beam as a probe. The technique allows the determination of local photo response of a cell, the electrical parameters and defects that occur in the individual solar cell. The semiconductor materials used to create solar cells are not always defect free and these defects reduce the electrical performance of the device. It is therefore important to use a system that will allow the characterization and extract the solar cell parameters as can be done using the LBIC system. By analysing these parameters and cell defects, further studies can be done to enhance the cell’s lifetime and hence its efficiency. Light beam induced current (LBIC) is a technique that focuses light onto a solar cell device and thus creating a photo-generated current that can be measured in the external circuit for analyses. By scanning this beam probe across a solar cell while measuring the current-voltage characteristics, a map of various parameters can be obtained. This thesis presents the design of the LBIC system, the software interfacing of the data acquisition system and local photo-response within different solar cell technologies. In addition, this thesis represent two curve fitting algorithms namely: the Gradient Descent Optimisation and the Differential Evolution used for the extraction of solar cell device parameters. The algorithms are based on the one-diode solar cell model and make use of the light generated current-voltage (I-V) data obtained from the LBIC system. Different solar cell technologies namely; single crystalline (c-Si) and multicrystalline silicon (mc-Si) was used for analysis. LBIC maps and I-V characteristics of both technologies was obtained. The LBIC maps shows performance degrading defects present in the bulk and the surface of the solar cells as a function of spatial distribution. These localised defects acts as trapping mechanism for the charge carriers and therefore limits recombination within the solar cell and thus decreasing the performance of the solar cell device. The resulting I-V characteristics obtained from the LBIC system were used to determine the performance parameters using the two algorithms. The resultant effect of these parameters on the performance of the solar cells was observed. The overall results showed that LBIC is a useful tool for identifying and characterising defects in solar cells.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii