Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Solar cell applications.

Artykuły w czasopismach na temat „Solar cell applications”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Solar cell applications”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

MAHENDRA KUMAR, MAHENDRA KUMAR. "Cds/ Sno2 Thin Films for Solar Cell Applications". International Journal of Scientific Research 3, nr 3 (1.06.2012): 322–23. http://dx.doi.org/10.15373/22778179/march2014/109.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Jabbar, Ali H. "Fabrication and Characterization of CuO:NiO Composite for Solar Cell Applications". Journal of Advanced Research in Dynamical and Control Systems 24, nr 4 (31.03.2020): 179–86. http://dx.doi.org/10.5373/jardcs/v12i4/20201431.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Zhang, Qifeng, Supan Yodyingyong, Junting Xi, Daniel Myers i Guozhong Cao. "Oxidenanowires for solar cell applications". Nanoscale 4, nr 5 (2012): 1436–45. http://dx.doi.org/10.1039/c2nr11595f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Joachim Möller, Hans. "Semiconductors for solar cell applications". Progress in Materials Science 35, nr 3-4 (styczeń 1991): 205–418. http://dx.doi.org/10.1016/0079-6425(91)90001-a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Yamaguchi, Masafumi. "Multi-junction solar cells and novel structures for solar cell applications". Physica E: Low-dimensional Systems and Nanostructures 14, nr 1-2 (kwiecień 2002): 84–90. http://dx.doi.org/10.1016/s1386-9477(02)00362-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Zhu, Rui, Zhongwei Zhang i Yulong Li. "Advanced materials for flexible solar cell applications". Nanotechnology Reviews 8, nr 1 (18.12.2019): 452–58. http://dx.doi.org/10.1515/ntrev-2019-0040.

Pełny tekst źródła
Streszczenie:
Abstract The solar power is one of the most promising renewable energy resources, but the high cost and complicated preparation technology of solar cells become the bottleneck of the wide application in many fields. The most important parameter for solar cells is the conversion efficiency, while at the same time more efficient preparation technologies and flexible structures should also be taken under significant consideration [1]. Especially with the rapid development of wearable devices, people are looking forward to the applications of solar cell technology in various areas of life. In this article the flexible solar cells, which have gained increasing attention in the field of flexibility in recent years, are introduced. The latest progress in flexible solar cells materials and manufacturing technologies is overviewed. The advantages and disadvantages of different manufacturing processes are systematically discussed.
Style APA, Harvard, Vancouver, ISO itp.
7

Tanabe, Katsuaki. "Nanostructured Materials for Solar Cell Applications". Nanomaterials 12, nr 1 (23.12.2021): 26. http://dx.doi.org/10.3390/nano12010026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Al Dosari, Haila M., i Ahmad I. Ayesh. "Nanocluster production for solar cell applications". Journal of Applied Physics 114, nr 5 (7.08.2013): 054305. http://dx.doi.org/10.1063/1.4817421.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Gourbilleau, F., C. Dufour, B. Rezgui i G. Brémond. "Silicon nanostructures for solar cell applications". Materials Science and Engineering: B 159-160 (marzec 2009): 70–73. http://dx.doi.org/10.1016/j.mseb.2008.10.052.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ramasamy, Parthiban, Palanisamy Manivasakan i Jinkwon Kim. "Upconversion nanophosphors for solar cell applications". RSC Adv. 4, nr 66 (2014): 34873–95. http://dx.doi.org/10.1039/c4ra03919j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Hendel, Richard. "Laser Applications in Solar Cell Manufacturing". Laser Technik Journal 5, nr 1 (styczeń 2008): 32–35. http://dx.doi.org/10.1002/latj.200790203.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Shi, Zhe, Rasoul Khaledialidusti, Massoud Malaki i Han Zhang. "MXene-Based Materials for Solar Cell Applications". Nanomaterials 11, nr 12 (23.11.2021): 3170. http://dx.doi.org/10.3390/nano11123170.

Pełny tekst źródła
Streszczenie:
MXenes are a class of two-dimensional nanomaterials with exceptional tailor-made properties, making them promising candidates for a wide variety of critical applications from energy systems, optics, electromagnetic interference shielding to those advanced sensors, and medical devices. Owing to its mechano-ceramic nature, MXenes have superior thermal, mechanical, and electrical properties. Recently, MXene-based materials are being extensively explored for solar cell applications wherein materials with superior sustainability, performance, and efficiency have been developed in demand to reduce the manufacturing cost of the present solar cell materials as well as enhance the productivity, efficiency, and performance of the MXene-based materials for solar energy harvesting. It is aimed in this review to study those MXenes employed in solar technologies, and in terms of the layout of the current paper, those 2D materials candidates used in solar cell applications are briefly reviewed and discussed, and then the fabrication methods are introduced. The key synthesis methods of MXenes, as well as the electrical, optical, and thermoelectric properties, are explained before those research efforts studying MXenes in solar cell materials are comprehensively discussed. It is believed that the use of MXene in solar technologies is in its infancy stage and many research efforts are yet to be performed on the current pitfalls to fill the existing voids.
Style APA, Harvard, Vancouver, ISO itp.
13

Dinh Lam, Nguyen, Le Thuy Trang, Nguyen Thi Mui, Pham Van Vinh, Vuong Van Cuong i Nguyen Van Hung. "INFLUENCES OF Sn DOPING CONCENTRATION ON CHARACTERISTICS OF ZnO FILMS FOR SOLAR CELL APPLICATIONS". Journal of Science, Natural Science 60, nr 7 (2015): 41–46. http://dx.doi.org/10.18173/2354-1059.2015-0030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Pasquinelli, Marcel, Jean-Jacques Simon, Judikael Le Rouzo, François Flory i Ludovic Escoubas. "Normalized Area Solar Cell and Potential Applications". Journal of Applied Mathematics and Physics 05, nr 05 (2017): 1106–12. http://dx.doi.org/10.4236/jamp.2017.55097.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Pacebutas, V., K. Grigoras i A. Krotkus. "Porous silicon applications in solar cell technology". Physica Scripta T69 (1.01.1997): 255–58. http://dx.doi.org/10.1088/0031-8949/1997/t69/053.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Kumar, Sandeep, Monika Nehra, Akash Deep, Deepak Kedia, Neeraj Dilbaghi i Ki-Hyun Kim. "Quantum-sized nanomaterials for solar cell applications". Renewable and Sustainable Energy Reviews 73 (czerwiec 2017): 821–39. http://dx.doi.org/10.1016/j.rser.2017.01.172.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Yakuphanoglu, F., A. Tataroğlu, Ahmed A. Al-Ghamdi, R. K. Gupta, Yusuf Al-Turki, Z. Şerbetçi, Saad Bin Omran i Farid El-Tantawy. "Ferroelectric Bi3.25La0.75Ti3O12 photodiode for solar cell applications". Solar Energy Materials and Solar Cells 133 (luty 2015): 69–75. http://dx.doi.org/10.1016/j.solmat.2014.10.038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Bett, A. W., F. Dimroth, G. Stollwerck i O. V. Sulima. "III-V compounds for solar cell applications". Applied Physics A: Materials Science & Processing 69, nr 2 (1.08.1999): 119–29. http://dx.doi.org/10.1007/s003390050983.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Nejati, Mohammadreza, Wen Zhang i Lun Huang. "Etching Paste for Innovative Solar-Cell Applications". IEEE Journal of Photovoltaics 3, nr 2 (kwiecień 2013): 669–73. http://dx.doi.org/10.1109/jphotov.2012.2230683.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Alexieva, Z. I., Z. S. Nenova, V. S. Bakardjieva, M. M. Milanova i Hr M. Dikov. "Antireflection coatings for GaAs solar cell applications". Journal of Physics: Conference Series 223 (1.04.2010): 012045. http://dx.doi.org/10.1088/1742-6596/223/1/012045.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Sopori, Bhushan. "Dielectric films for Si solar cell applications". Journal of Electronic Materials 34, nr 5 (maj 2005): 564–70. http://dx.doi.org/10.1007/s11664-005-0066-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Yin, Zongyou, Jixin Zhu, Qiyuan He, Xiehong Cao, Chaoliang Tan, Hongyu Chen, Qingyu Yan i Hua Zhang. "Graphene-Based Materials for Solar Cell Applications". Advanced Energy Materials 4, nr 1 (23.09.2013): 1300574. http://dx.doi.org/10.1002/aenm.201300574.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

KUBO, Takaya, Koichi TAMAKI i Hiroshi SEGAWA. "Colloid Quantum Dots and Solar Cell Applications". Journal of the Japan Society of Colour Material 96, nr 8 (20.08.2023): 280–85. http://dx.doi.org/10.4011/shikizai.96.280.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Yamaguchi, Masafumi, Kan-Hua Lee, Daisuke Sato, Kenji Araki, Nobuaki Kojima, Tatsuya Takamoto, Taizo Masuda i Akinori Satou. "Overview of Si Tandem Solar Cells and Approaches to PV-Powered Vehicle Applications". MRS Advances 5, nr 8-9 (2020): 441–50. http://dx.doi.org/10.1557/adv.2020.66.

Pełny tekst źródła
Streszczenie:
ABSTRACTDevelopment of high-efficiency solar cell modules and new application fields are significant for the further development of photovoltaics (PV) and creation of new clean energy infrastructure based on PV. Especially, development of PV-powered EV applications is desirable and very important for this end. This paper shows analytical results for efficiency potential of various solar cells for choosing candidates of high-efficiency solar cell modules for automobile applications. As a result of analysis, Si tandem solar cells are thought to be some of their candidates. This paper also overviews efficiency potential and recent activities of various Si tandem solar cells such as III-V/Si, II-VI/Si, chalcopyrite/Si, perovskite/Si and nanowire/Si tandem solar cells. The III-V/Si tandem solar cells are expected to have a high potential for various applications because of high efficiency with efficiencies of more than 36% for 2-junction and 42 % for 3-junction tandem solar cells under 1-sun AM1.5 G, lightweight and low-cost potential. Recent results for our 28.2 % efficiency and Sharp’s 33% mechanically stacked InGaP/GaAs/Si 3-junction solar cell are also presented. Approaches to automobile application by using III-V/Si tandem solar cells and static low concentration are presented.
Style APA, Harvard, Vancouver, ISO itp.
25

Miyashita, Naoya, Nazmul Ahsan i Yoshitaka Okada. "Evaluation of concentrator photovoltaic properties of GaInNAsSb solar cells for multijunction solar cell applications". Japanese Journal of Applied Physics 54, nr 8S1 (15.07.2015): 08KE06. http://dx.doi.org/10.7567/jjap.54.08ke06.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Jishi, Radi A., i Marcus A. Lucas. "ZnSnS3: Structure Prediction, Ferroelectricity, and Solar Cell Applications". International Journal of Photoenergy 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/6193502.

Pełny tekst źródła
Streszczenie:
The rapid growth of the solar energy industry is driving a strong demand for high performance, efficient photoelectric materials. In particular, ferroelectrics composed of earth-abundant elements may be useful in solar cell applications due to their large internal polarization. Unfortunately, wide band gaps prevent many such materials from absorbing light in the visible to mid-infrared range. Here, we address the band gap issue by investigating the effects of substituting sulfur for oxygen in the perovskite structure ZnSnO3. Using evolutionary methods, we identify the stable and metastable structures of ZnSnS3and compare them to those previously characterized for ZnSnO3. Our results suggest that the most stable structure of ZnSnS3is the monoclinic structure, followed by the metastable ilmenite and lithium niobate structures. The latter structure is highly polarized, possessing a significantly reduced band gap of 1.28 eV. These desirable characteristics make it a prime candidate for solar cell applications.
Style APA, Harvard, Vancouver, ISO itp.
27

Sharma, Preetika, i Gaurav Sapra. "Integrating Silicon In Armchair Graphene Nanoribbon For Solar Cell Applications". IOP Conference Series: Materials Science and Engineering 1225, nr 1 (1.02.2022): 012028. http://dx.doi.org/10.1088/1757-899x/1225/1/012028.

Pełny tekst źródła
Streszczenie:
Abstract Solar power is not only free but also infinite and use of solar energy indeed has many advantages. Thus, solar technologies are greatly studied for producing low cost and better versions of existing devices that can be integrated in the existing photovoltaic (PV) systems. Many such devices like the solar powered curtains and clothes, cases for laptop and other electronic products are being produced. Silicon today is of course being used rapidly as a PV material for solar cell. However, a continuous effort has been made to use graphene for high efficiency solar cell applications and its use. Graphene on the other hand, is not very good at collecting the electrical current produced inside the solar cell but researchers are looking appropriately on this material. Many ways to modify graphene for this purpose are being studied. Solar cell requires semiconductor materials for exhibiting photovoltaic effect. As graphene is zero band gap material, hence, armchair graphene nanoribbons (AGNR) that are semiconducting are being looked up for solar cell applications. Therefore, in this present work, various attempts have been made to investigate the electronic bandgap by using AGNRs in solar cells. The in-depth analysis of electronic properties has been done where band structure, density of states and geometrical stability on the basis of transmission of energy has been examined. Further, AGNR doping with silicon has been performed in which we have replaced the carbon with silicon. Initially, we started with one-silicon atom as a dopant and then went upto 4 silicon as dopant and the variations has been compared. Thus, through this analysis, the use of doped AGNRs in solar cells is investigated.
Style APA, Harvard, Vancouver, ISO itp.
28

Shih, Ju Yi, Shu Ling Lai i Huai Tzu Cheng. "Design and Applications of Solar Powered Textiles". Advanced Materials Research 655-657 (styczeń 2013): 2017–24. http://dx.doi.org/10.4028/www.scientific.net/amr.655-657.2017.

Pełny tekst źródła
Streszczenie:
Energy, environmental protection and climate change are the major topics of industry development and production research in recent years. The trends of energy saving and carbon reduction have grown up, and the green products are gradually to be emphasized. Among the various green products, the solar cell is a kind of successful product after many years of promotion and development. Also, the utilization and improvement of solar cell technologies and products have been advanced and diversified, and the territories of application are gradually expanded. According to this trend of green products and environmental issues, this paper discusses about the application of solar cell on textile design. The categories and characteristics of solar cells have been examined, and the requirements and system of textile utilization are also described. Finally, the technologies and methods of textile design with solar cells are explained to promote the solar textile application.
Style APA, Harvard, Vancouver, ISO itp.
29

Andreev, Viacheslav M. "Multijunction solar arrays for space and terrestrial applications". RUDN Journal of Engineering Researches 21, nr 4 (15.12.2020): 271–80. http://dx.doi.org/10.22363/2312-8143-2020-21-4-271-280.

Pełny tekst źródła
Streszczenie:
Photovoltaic conversion of the solar energy is the most prospective direction of the renewable power engineering. Solar arrays ensure power supply of spacecrafts and are gaining increasingly more application on the Earth. In the majority of developed countries, laws on state support of the green power engineering assisted in a substantial increase of power of the solar photovoltaic systems have been adopted. The main barrier to increasing the terrestrial solar photovoltaics development rates is a relatively high cost of the solar electric power. The ways for reducing the cost are the rise of the efficiency of power systems and the reduction of the material consumption for arrays based on multijunction solar cells. Results of multijunction solar cells and modules developments for space and terrestrial solar arrays are discussed in the article. In the last years, a significant experience on creation of multijunction solar cells was accumulated. Cascade solar cells and solar photovoltaic installations on their base with sunlight concentrators have been developed. At present, the terrestrial cascade solar cell efficiency exceeds 45%, which is substantially higher than that in conventional Si and thin-film solar arrays. The cascade solar cell efficiency increase has been achieved at the expense of splitting the sunlight spectrum into several intervals by the solar cell semiconductor structure fulfilling more effective photon energy conversion of each of these intervals in a definite parts of this structure. It is shown that multijunction solar cells provide the highest efficiency and they are the basic components of space arrays. Multijunction solar cells provide the highest conversion efficiency of concentrated sunlight as well. It opens prospects for decreasing the solar cell area and cost proportionally to the sunlight concentration. Developed concentrated photovoltaic installations are promising for wide applications in the high scale terrestrial solar photovoltaic energetics.
Style APA, Harvard, Vancouver, ISO itp.
30

Ali, Reem Sami. "Characterization of ZnO Thin Film/p-Si Fabricated by Vacuum Evaporation Method for Solar Cell Applications". NeuroQuantology 18, nr 1 (30.01.2020): 26–31. http://dx.doi.org/10.14704/nq.2020.18.1.nq20103.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Wibowo, Arie, Maradhana Agung Marsudi, Muhamad Ikhlasul Amal, Muhammad Bagas Ananda, Ruth Stephanie, Husaini Ardy i Lina Jaya Diguna. "ZnO nanostructured materials for emerging solar cell applications". RSC Advances 10, nr 70 (2020): 42838–59. http://dx.doi.org/10.1039/d0ra07689a.

Pełny tekst źródła
Streszczenie:
Zinc oxide (ZnO) has been considered as one of the potential materials in solar cell applications, owing to its relatively high conductivity, electron mobility, stability against photo-corrosion and availability at low-cost.
Style APA, Harvard, Vancouver, ISO itp.
32

Chen, Hongzheng. "Forum: High Efficiency Polymers for Solar Cell Applications". ACS Applied Polymer Materials 3, nr 1 (8.01.2021): 1. http://dx.doi.org/10.1021/acsapm.0c01361.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Mocioiu, Ana‐Maria, i Oana C. Mocioiu. "Flexible and Conductive Materials for Solar Cell Applications". Macromolecular Symposia 396, nr 1 (kwiecień 2021): 2000330. http://dx.doi.org/10.1002/masy.202000330.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Zahoor, Romana, Abdul Jalil, Syed Zafar Ilyas, Sarfraz Ahmed i Ather Hassan. "Optoelectronic and solar cell applications of ZnO nanostructures". Results in Surfaces and Interfaces 2 (luty 2021): 100003. http://dx.doi.org/10.1016/j.rsurfi.2021.100003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Wang, H., C. C. Oey, A. B. Djurišić, M. H. Xie, Y. H. Leung, K. K. Y. Man, W. K. Chan, A. Pandey, J. M. Nunzi i P. C. Chui. "Titania bicontinuous network structures for solar cell applications". Applied Physics Letters 87, nr 2 (11.07.2005): 023507. http://dx.doi.org/10.1063/1.1992659.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Anta, Juan A. "Random walk numerical simulation for solar cell applications". Energy & Environmental Science 2, nr 4 (2009): 387. http://dx.doi.org/10.1039/b819979e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Nalini, Ramesh, Christian Dufour, Julien Cardin i Fabrice Gourbilleau. "New Si-based multilayers for solar cell applications". Nanoscale Research Letters 6, nr 1 (2011): 156. http://dx.doi.org/10.1186/1556-276x-6-156.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Kwong, C. Y., W. C. H. Choy, A. B. Djuri i, P. C. Chui, K. W. Cheng i W. K. Chan. "Poly(3-hexylthiophene):TiO2nanocomposites for solar cell applications". Nanotechnology 15, nr 9 (2.07.2004): 1156–61. http://dx.doi.org/10.1088/0957-4484/15/9/008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Ojajärvi, Juho, Esa Räsänen, Sascha Sadewasser, Sebastian Lehmann, Philipp Wagner i Martha Ch. Lux-Steiner. "Tetrahedral chalcopyrite quantum dots for solar-cell applications". Applied Physics Letters 99, nr 11 (12.09.2011): 111907. http://dx.doi.org/10.1063/1.3640225.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Mulla, B., i C. Sabah. "Perfect metamaterial absorber design for solar cell applications". Waves in Random and Complex Media 25, nr 3 (12.05.2015): 382–92. http://dx.doi.org/10.1080/17455030.2015.1042091.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Taranekar, Prasad, Qiquan Qiao, Hui Jiang, Ion Ghiviriga, Kirk S. Schanze i John R. Reynolds. "Hyperbranched Conjugated Polyelectrolyte Bilayers for Solar-Cell Applications". Journal of the American Chemical Society 129, nr 29 (lipiec 2007): 8958–59. http://dx.doi.org/10.1021/ja073216a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Edley, Michael E., Borirak Opasanont, Jason T. Conley, Hoang Tran, Sergey Y. Smolin, Siming Li, Andrew D. Dillon, Aaron T. Fafarman i Jason B. Baxter. "Solution processed CuSbS2 films for solar cell applications". Thin Solid Films 646 (styczeń 2018): 180–89. http://dx.doi.org/10.1016/j.tsf.2017.12.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Hrostea, Laura, Mihaela Boclinca, Marcela Socol, Liviu Leontie, Anca Stanculescu i Mihaela Girtan. "Oxide/metal/oxide electrodes for solar cell applications". Solar Energy 146 (kwiecień 2017): 464–69. http://dx.doi.org/10.1016/j.solener.2017.03.017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Mane, S. R., B. J. Walekar, R. M. Mane, V. V. Kondalkar, V. B. Ghanwat i P. N. Bhosale. "Molybdenum Heteropolyoxometalate Thin Films for Solar Cell Applications". Procedia Materials Science 6 (2014): 1104–9. http://dx.doi.org/10.1016/j.mspro.2014.07.182.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Korany, Fatma M. H., Mohamed Farhat O. Hameed, Mohamed Hussein, Roaa Mubarak, Mohamed I. Eladawy i Salah Sabry A. Obayya. "Conical structures for highly efficient solar cell applications". Journal of Nanophotonics 12, nr 01 (6.03.2018): 1. http://dx.doi.org/10.1117/1.jnp.12.016019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Chen, Jiun-Tai, i Chain-Shu Hsu. "Conjugated polymer nanostructures for organic solar cell applications". Polymer Chemistry 2, nr 12 (2011): 2707. http://dx.doi.org/10.1039/c1py00275a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Li, Chen, Jun‐Ho Yum, Soo‐Jin Moon, Andreas Herrmann, Felix Eickemeyer, Neil G Pschirer, Peter Erk i in. "An Improved Perylene Sensitizer for Solar Cell Applications". ChemSusChem 1, nr 7 (21.07.2008): 615–18. http://dx.doi.org/10.1002/cssc.200800068.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Sudhakar, Kolanu, Lingamallu Giribabu, Paolo Salvatori i Filippo De Angelis. "Triphenylamine-functionalized corrole sensitizers for solar-cell applications". physica status solidi (a) 212, nr 1 (28.08.2014): 194–202. http://dx.doi.org/10.1002/pssa.201431169.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Striemer, C. C., i P. M. Fauchet. "Dynamic etching of silicon for solar cell applications". physica status solidi (a) 197, nr 2 (maj 2003): 502–6. http://dx.doi.org/10.1002/pssa.200306553.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Ramasamy, Parthiban, Palanisamy Manivasakan i Jinkwon Kim. "ChemInform Abstract: Upconversion Nanophosphors for Solar Cell Applications". ChemInform 45, nr 48 (13.11.2014): no. http://dx.doi.org/10.1002/chin.201448264.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii