Gotowa bibliografia na temat „Solar cell”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Solar cell”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Solar cell"

1

Choudhary, Yogesh, Ankita Bhatia i Md Asif Iqbal. "A Review on Dye Sensitized Solar Cell". International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (30.04.2018): 1103–7. http://dx.doi.org/10.31142/ijtsrd11272.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kryuchenko, Yu V. "Efficiency a-Si:H solar cell. Detailed theory". Semiconductor Physics Quantum Electronics and Optoelectronics 15, nr 2 (30.05.2012): 91–116. http://dx.doi.org/10.15407/spqeo15.02.091.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Smestad, Greg P., Frederik C. Krebs, Carl M. Lampert, Claes G. Granqvist, K. L. Chopra, Xavier Mathew i Hideyuki Takakura. "Reporting solar cell efficiencies in Solar Energy Materials and Solar Cells". Solar Energy Materials and Solar Cells 92, nr 4 (kwiecień 2008): 371–73. http://dx.doi.org/10.1016/j.solmat.2008.01.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Shizhou Xiao, Shizhou Xiao, i Andreas Ostendorf Andreas Ostendorf*. "Laser Processing in Solar Cell Production(Invited Paper)". Chinese Journal of Lasers 36, nr 12 (2009): 3116–24. http://dx.doi.org/10.3788/cjl20093612.3116.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Admane, Ashvini, i Dr Harikumar Naidu. "Development of Low Cost Solar Cell and Inverter". International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (30.06.2018): 2195–96. http://dx.doi.org/10.31142/ijtsrd14519.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

MAHENDRA KUMAR, MAHENDRA KUMAR. "Cds/ Sno2 Thin Films for Solar Cell Applications". International Journal of Scientific Research 3, nr 3 (1.06.2012): 322–23. http://dx.doi.org/10.15373/22778179/march2014/109.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

MARTYNYUK, V. V., G. I. RADELCHUK i O. V. SHPAK. "IMPROVED IMPEDANCE MATHEMATICAL MODEL OF A SOLAR CELL". Measuring and computing devices in technological processes 63, nr 1 (styczeń 2019): 5–9. http://dx.doi.org/10.31891/2219-9365-2019-63-1-5-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Mutalikdesai, Amruta, i Sheela K. Ramasesha. "Emerging solar technologies: Perovskite solar cell". Resonance 22, nr 11 (listopad 2017): 1061–83. http://dx.doi.org/10.1007/s12045-017-0571-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Mazhari, B. "An improved solar cell circuit model for organic solar cells". Solar Energy Materials and Solar Cells 90, nr 7-8 (maj 2006): 1021–33. http://dx.doi.org/10.1016/j.solmat.2005.05.017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Aziz, N. A. Nik, M. I. N. Isa i S. Hasiah. "Electrical and Hall Effect Study of Hybrid Solar Cell". Journal of Clean Energy Technologies 2, nr 4 (2014): 322–26. http://dx.doi.org/10.7763/jocet.2014.v2.148.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Solar cell"

1

Tan, Bertha. "Nanorod solar cell". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42160.

Pełny tekst źródła
Streszczenie:
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007.
Includes bibliographical references (p. 68-70).
The crude oil supply crisis the world is facing today along with the disastrous global warming caused primarily as a result the green house gases, has heightened the need for an eco-friendly and renewable energy technology. Solar cells, with their ability to convert the free and gigantic energy supply of the sun into electricity, are one such attractive choice. In this thesis, a study of the use of new technologies for enhanced solar cell performance based on conversion efficiency is carried out by first understanding the mechanism of selected major solar cell types, followed by an analysis of external or internal factors that affect their performance. One new technology under investigation to boost solar cell efficiency is the introduction of nanorod/wire structures into existing designs. This report discusses this approach in detail, highlighting beneficial characteristics offered and also looking into the structure realization through advanced nanostructure processing techniques. Finally, having a complete technology background at hand, various potential markets for new solar cell technologies are examined.
by Bertha Tan.
M.Eng.
Style APA, Harvard, Vancouver, ISO itp.
2

Gruber, Malte. "Solar Cell Simulator". Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200619.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Sengil, Nevsan. "Solar cell concentrator system". Thesis, Monterey, California: U.S. Naval Postgraduate School, 1986. http://hdl.handle.net/10945/22111.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Hammarlund, Tomas, Jesper Sundin i Johan Kövamees. "Solar Cell Powered Boat". Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-326109.

Pełny tekst źródła
Streszczenie:
The objective of this project is to find out experimentally and through theoretical calculations and applications whether a cargo ship can be operated by means of solar cells. The project deals with the amount of research and applications already available in this area today and which areas could be developed and improved in future research. A radio-controlled miniature ship was purchased and modified to conduct tests on with solar cells. The data collected from these tests and the researched data were then analyzed to make calculations on real sized ships. A system was designed together with the miniature ship motors, the solar cells and an Arduino to carry out these tests. The miniature ship’s solar cells contributed with about 30% of the total power. The two theoretical ships had a lower percentage of about 4% and 8% respectively at maximum throttle. An economical calculations where both a hybrid cargo ship and an fully electrical ship concluded that it’s expensive but there is a profit in build each over the course of 20 years.
Style APA, Harvard, Vancouver, ISO itp.
5

Whyburn, Gordon Patrick. "A simple organic solar cell". Pomona College, 2007. http://ccdl.libraries.claremont.edu/u?/stc,21.

Pełny tekst źródła
Streszczenie:
Finding renewable sources of energy is becoming an increasingly important component of scientific research. Greater competition for existing sources of energy has strained the world’s supply and demand balance and has increased the prices of traditional sources of energy such as oil, coal, and natural gas. The experiment discussed in this paper is designed to identify and build an inexpensive and simple method for creating an effective organic solar cell.
Style APA, Harvard, Vancouver, ISO itp.
6

Nagata, Shinobu. "ELECTROSPUN POLYMER-FIBER SOLAR CELL". VCU Scholars Compass, 2011. http://scholarscompass.vcu.edu/etd/2566.

Pełny tekst źródła
Streszczenie:
A study of fabricating the first electrospun polymer-fiber solar cell with MEHPPV is presented. Motivation for the work and a brief history of solar cell is given. Limiting factors to improvement of polymer solar cell efficiency are illustrated. Electrospinning is introduced as a technique that may increase polymer solar cell efficiency, and a list of advantages in the technique applied to solar cell is discussed. Results of electrospun polymer-fiber solar cell, absorption, and its device parameter diagnosis through an equivalent circuit analysis are presented.
Style APA, Harvard, Vancouver, ISO itp.
7

Falsgraf, Erika S. "Biologically-Derived Dye-Sensitized Solar Cells: A Cleaner Alternative for Solar Energy". Scholarship @ Claremont, 2012. http://scholarship.claremont.edu/pomona_theses/61.

Pełny tekst źródła
Streszczenie:
This project employs the biological compounds hemin, melanin, and retinoic acid as photoactive dyes in dye-sensitized solar cells (DSSCs). These dyes are environmentally and economically superior to the standard ruthenium-based dyes currently used in DSSCs because they are nontoxic and widely available. Characterization by linear sweep voltammetry yielded averaged maximum overall conversion efficiency values of 0.059% for retinoic acid, 0.023% for melanin, and 0.015% for hemin. Absorption spectra of hemin and retinoic acid suggest that they would complement each other well when used in tandem in one cell because hemin has a secondary maximum absorption peak at 613nm and retinoic acid has maximum absorption at 352nm. Cells made with hemin or melanin performed better with the use of lower temperatures to seal the cells, and hemin cells performed exceptionally well with exclusion of the sealing procedure. These biologically-derived cells have the potential to advance the development of inexpensive and safer solar energy sources, which promise to serve as clean energy sources in the near future.
Style APA, Harvard, Vancouver, ISO itp.
8

Schumacher, Jürgen Otto. "Numerical simulation of silicon solar cells with novel cell structures". [S.l. : s.n.], 2000. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB9170598.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Saj, Damian, i Izabela Saj. "Nanowire-based InP solar cell materials". Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-19455.

Pełny tekst źródła
Streszczenie:
In this project, a new type of InP solar cell was investigated. The main idea is that light is converted to electrical current in p-i-n photodiodes formed in thin InP semiconductor nanowires epitaxially grown on an InP substrate. Two different types of samples were investigated. In the first sample type (series C03), the substrate was used as a common p-type electrode, whereas a short p-segment was included in all nanowires for the second sample type (B07). Current – voltage (I-V) characteristics with and without illumination were measured, as well as spectrally resolved photocurrents with and without bias. The main conclusion is that the p-i-n devices showed good rectifying behavior with an onset in photocurrent that agrees with the corresponding energy band gap of InP. An interesting observation was that in series B07 (with included p-segments) the photocurrent was determined by the band gap of hexagonal Wurtzite crystal structure, whereas series C03 (without p-segments) displayed a photocurrent dominated by the InP substrate which has a Zincblende crystal structure. We found that the overall short-circuit current was ten as large for the latter sample, stressing the importance of the substrate as a source of photocurrent.
Style APA, Harvard, Vancouver, ISO itp.
10

Rosenberg, Glenn Alan 1960. "Monolithic series connected solar cell array". Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/276950.

Pełny tekst źródła
Streszczenie:
Single crystal silicon solar cells for use under high concentration sunlight presently exhibit the highest conversion efficiencies. The following paper represents further work done to improve the efficiency of crystalline silicon solar cells through improved design. Design features and processing to address the loss mechanisms encountered in silicon solar cells are discussed. An improved solar cell structure has resulted from this work along with a practical processing sequence. Experiments were performed to show the practicality of pattern formation on the walls of the V-groove structures using conventional photolithography and masking techniques. Also, new beam processing techniques are discussed to improve processing.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Solar cell"

1

Travino, Michael R. Dye-sensitized solar cells and solar cell performance. Hauppauge, N.Y: Nova Science Publisher, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Conibeer, Gavin, i Arthur Willoughby, red. Solar Cell Materials. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118695784.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Tiwari, Atul, Rabah Boukherroub i Maheshwar Sharon, red. Solar Cell Nanotechnology. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118845721.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Neville, Richard C. Solar energy conversion: The solar cell. Wyd. 2. Amsterdam: Elsevier, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

A, Carson Joseph, red. Solar cell research progress. New York: Nova Science Publishers, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Wilson, Denise. Wearable Solar Cell Systems. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group [2020]: CRC Press, 2019. http://dx.doi.org/10.1201/9780429399596.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Sengil, Nevsan. Solar cell concentrator system. Monterey, Calif: Naval Postgraduate School, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Solar cell device physics. Wyd. 2. Amsterdam: Academic Press, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Jet Propulsion Laboratory (U.S.), red. Solar cell radiation handbook. Pasadena, Calif: National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Jet Propulsion Laboratory (U.S.), red. GaAs solar cell radiation handbook. Pasadena, Calif: National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Solar cell"

1

Buecheler, Stephan, Lukas Kranz, Julian Perrenoud i Ayodhya Nath Tiwari. "CdTe Solar Cells solar cell". W Encyclopedia of Sustainability Science and Technology, 1976–2004. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_463.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Głowacki, Eric Daniel, Niyazi Serdar Sariciftci i Ching W. Tang. "Organic Solar Cells organic solar cell". W Solar Energy, 97–128. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_466.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Głowacki, Eric Daniel, Niyazi Serdar Sariciftci i Ching W. Tang. "Organic Solar Cells organic solar cell". W Encyclopedia of Sustainability Science and Technology, 7553–84. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_466.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Weik, Martin H. "solar cell". W Computer Science and Communications Dictionary, 1612. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_17670.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Mirica, Marius C., Marina A. Tudoran i Mihai V. Putz. "Solar Cell". W New Frontiers in Nanochemistry, 403–18. Includes bibliographical references and indexes. | Contents: Volume 1. Structural nanochemistry – Volume 2. Topological nanochemistry – Volume 3. Sustainable nanochemistry.: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9780429022951-28.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Schock, Hans-Werner. "Solar Cells solar cell , Chalcopyrite-Based solar cell chalcopyrite-based Thin Film". W Solar Energy, 323–40. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_464.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Wronski, Christopher R., i Nicolas Wyrsch. "Silicon Solar Cells silicon solar cell , Thin-film silicon solar cell thin-film". W Solar Energy, 270–322. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_462.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Martinuzzi, Santo, Abdelillah Slaoui, Jean-Paul Kleider, Mustapha Lemiti, Christian Trassy, Claude Levy-Clement, Sébastien Dubois i in. "Silicon Solar Cells silicon solar cell , Crystalline". W Solar Energy, 226–69. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_461.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Schock, Hans-Werner. "Solar Cells solar cell , Chalcopyrite-Based solar cell chalcopyrite-based Thin Film". W Encyclopedia of Sustainability Science and Technology, 9394–411. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_464.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Guillemoles, Jean-François. "Solar Cells solar cell : Very High Efficiencies Approaches solar cell very high efficiencies approaches". W Solar Energy, 358–77. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_467.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Solar cell"

1

Davis, Mark W., A. Hunter Fanney i Brian P. Dougherty. "Prediction of Building Integrated Photovoltaic Cell Temperatures". W ASME 2001 Solar Engineering: International Solar Energy Conference (FORUM 2001: Solar Energy — The Power to Choose). American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/sed2001-140.

Pełny tekst źródła
Streszczenie:
Abstract A barrier to the widespread application of building integrated photovoltaics (BIPV) is the lack of validated predictive performance tools. Architects and building owners need these tools in order to determine if the potential energy savings realized from building integrated photovoltaics justifies the additional capital expenditure. The National Institute of Standards and Technology (NIST) seeks to provide high quality experimental data that can be used to develop and validate these predictive performance tools. The temperature of a photovoltaic module affects its electrical output characteristics and efficiency. Traditionally, the temperature of solar cells has been characterized using the nominal operating cell temperature (NOCT), which can be used in conjunction with a calculation procedure to predict the module’s temperature for various environmental conditions. The NOCT procedure provides a representative prediction of the cell temperature, specifically for the ubiquitous rack-mounted installation. The procedure estimates the cell temperature based on the ambient temperature and the solar irradiance. It makes the approximation that the overall heat loss coefficient is constant. In other words, the temperature difference between the panel and the environment is linearly related to the heat flux on the panels (solar irradiance). The heat transfer characteristics of a rack-mounted PV module and a BIPV module can be quite different. The manner in which the module is installed within the building envelope influences the cell’s operating temperature. Unlike rack-mounted modules, the two sides of the modules may be subjected to significantly different environmental conditions. This paper presents a new technique to compute the operating temperature of cells within building integrated photovoltaic modules using a one-dimensional transient heat transfer model. The resulting predictions are compared to measured BIPV cell temperatures for two single crystalline BIPV panels (one insulated panel and one uninsulated panel). Finally, the results are compared to predictions using the NOCT technique.
Style APA, Harvard, Vancouver, ISO itp.
2

Walker, Andy, Jim Christensen, Greg Barker i Lyle Rawlings. "Short-Term Measurement of a Photovoltaic/Fuel Cell Remote Hybrid Power System at Golden Gate National Recreation Area". W ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1056.

Pełny tekst źródła
Streszczenie:
This paper reports short-term performance measurement of a hybrid photovoltaic/fuel cell power supply system at Kirby Cove Campground in Golden Gate National Recreation Area, California. The system operated reliably for two years from June 1999 to July 2001. During this period, the campground host load was met with a combination of solar power and power from the fuel cell. In August of 2001, reports of power outages justified an in-depth investigation. Data is reported over 13.5 days from September 2 to September 15, 2001. Over this period, energy delivered by the photovoltaic array totaled 42.82 kWh. Energy delivered by the fuel cell totaled 1.34 kWh, and net (out-in) energy from the battery totaled 6.82 kWh. After losses in the battery and inverter, energy delivered to the campground host totaled 34.94 kWh, an average of 2.6 kWh/day. Photovoltaic efficiency was measured at 8.9%. Fuel cell efficiency was measured at 42%, which is a typical value, but fuel cell power output was only 35 W instead of the 250 W rated power. Replacing a burnt fuse restored fuel cell power to 125 W, but several cells measured low voltage, and the fuel cell was removed for repair or replacement. Ordinarily, load in excess of the PV capability would be met by the fuel cell, and 22 cylinders of H2 (261 scf, 7,386 sl each) were consumed from April to August 2001. After failure of the fuel cell, load in excess of the solar capability resulted in discharged batteries and eight power outages totaling 48 hours in duration. Thus, overall system availability was 85% when relying only on solar power. This paper describes daily system operation in detail, presents component performance indicators, identifies causes of performance degradation, and provides recommendations for improvement.
Style APA, Harvard, Vancouver, ISO itp.
3

Kamide, Kenji, Toshimitsu Mochizuki, Hidefumi Akiyama i Hidetaka Takato. "A concept of nonequilibrium solar cell heat recovery solar cell". W Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VIII, redaktorzy Alexandre Freundlich, Masakazu Sugiyama i Laurent Lombez. SPIE, 2019. http://dx.doi.org/10.1117/12.2505922.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Mann, Colin, Don Walker, John Nocerino, Justin H. Lee i Simon H. Liu. "Intelligent Solar Cell Carrier (iSC2) for Solar Cell Calibration Standards". W 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, 2018. http://dx.doi.org/10.1109/pvsc.2018.8548041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kochergin, Vladimir, Zhong Shi i Kelly Dobson. "High-throughput photovoltaic cell characterization system". W Solar Energy + Applications, redaktor Benjamin K. Tsai. SPIE, 2008. http://dx.doi.org/10.1117/12.794023.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Takahashi, Yoshihiko, Yoshitaka Namekawa, Storu Yamaguchi, Tsubasa Yamazaki i Ryo Nakajima. "Mechanical Designs and Fuel Cell Temperature Characteristics of Single Person Operated Fuel Cell Vehicle with 1kW Fuel Cells (micro FCV)". W ISES Solar World Congress 2011. Freiburg, Germany: International Solar Energy Society, 2011. http://dx.doi.org/10.18086/swc.2011.09.08.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

W, Peter. "Thermodynamic Limits of Solar Cell Efficiency". W Solar Energy: New Materials and Nanostructured Devices for High Efficiency. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/solar.2008.stua1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Tracy, J., i J. Wise. "Space solar cell performance for advanced GaAs and Si solar cells". W Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference. IEEE, 1988. http://dx.doi.org/10.1109/pvsc.1988.105823.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Arakawa, H., C. Shiraishi, M. Tatemoto, H. Kishida, D. Usui, A. Suma, A. Takamisawa i T. Yamaguchi. "Solar hydrogen production by tandem cell system composed of metal oxide semiconductor film photoelectrode and dye-sensitized solar cell". W Solar Energy + Applications, redaktor Jinghua Guo. SPIE, 2007. http://dx.doi.org/10.1117/12.773366.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Hou, William W., Sheng-han Li, Chun-chih Tung, Richard B. Kaner i Yang Yang. "Solution-Processed Chalcopyrite Thin-film Solar Cell". W Solar Energy: New Materials and Nanostructured Devices for High Efficiency. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/solar.2008.swc1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Solar cell"

1

Exstrom, Christopher L. CIBS Solar Cell Development. Office of Scientific and Technical Information (OSTI), październik 2008. http://dx.doi.org/10.2172/939114.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Usov, Igor, i Milan Sykora. Uranium Oxide Solar Cell. Office of Scientific and Technical Information (OSTI), wrzesień 2014. http://dx.doi.org/10.2172/1159193.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Gee, J., W. Schubert i P. Basore. Emitter Wrap-Through solar cell. Office of Scientific and Technical Information (OSTI), grudzień 1992. http://dx.doi.org/10.2172/10161986.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Green, M. A., J. Zhao, A. Wang, X. Dai, A. Milne, S. Cai, A. Aberle i S. R. Wenham. Silicon concentrator solar cell research. Office of Scientific and Technical Information (OSTI), czerwiec 1993. http://dx.doi.org/10.2172/10176414.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Green, M., Zhao Jianhua, Wang Aihua i A. Blakers. Silicon concentrator solar cell development. Office of Scientific and Technical Information (OSTI), maj 1990. http://dx.doi.org/10.2172/7122289.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Sater, B. L. A high intensity solar cell invention: The edge-illuminated vertical multi-junction (VNJ) solar cell. Office of Scientific and Technical Information (OSTI), sierpień 1992. http://dx.doi.org/10.2172/7269907.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Sopori, Bhushan, i Daniel J. Friedman. Improving Silicon Solar Cell Efficiency Through Advanced Cell Processing, Highly Uniform Texturing, and Thinner Cells. Office of Scientific and Technical Information (OSTI), luty 2019. http://dx.doi.org/10.2172/1496856.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Das, Biswajit. Solar Cell Nanotechnology (Final Technical Report). Office of Scientific and Technical Information (OSTI), maj 2014. http://dx.doi.org/10.2172/1127337.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Park, J. H. Materials science in solar cell development. Office of Scientific and Technical Information (OSTI), kwiecień 1992. http://dx.doi.org/10.2172/10151117.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Wagner, Ken. Rugged, Thin GaAs Solar Cell Development. Fort Belvoir, VA: Defense Technical Information Center, maj 1988. http://dx.doi.org/10.21236/ada198533.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii