Gotowa bibliografia na temat „Solar aided thermal power plants”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Solar aided thermal power plants”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Solar aided thermal power plants"
Zhai, Rongrong, Yongping Yang, Yong Zhu i Denggao Chen. "The Evaluation of Solar Contribution in Solar Aided Coal-Fired Power Plant". International Journal of Photoenergy 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/197913.
Pełny tekst źródłaYan, Qin, Eric Hu, Yongping Yang i Rongrong Zhai. "Evaluation of solar aided thermal power generation with various power plants". International Journal of Energy Research 35, nr 10 (26.07.2010): 909–22. http://dx.doi.org/10.1002/er.1748.
Pełny tekst źródłaWang, Meng Jiao, Hong Juan Hou i Yong Ping Yang. "Theoretical Study of Solar Energy Aided Auxiliary Steam System". Applied Mechanics and Materials 654 (październik 2014): 105–8. http://dx.doi.org/10.4028/www.scientific.net/amm.654.105.
Pełny tekst źródłaSuresh, M. V. J. J., K. S. Reddy i Ajit Kumar Kolar. "4-E (Energy, Exergy, Environment, and Economic) analysis of solar thermal aided coal-fired power plants". Energy for Sustainable Development 14, nr 4 (grudzień 2010): 267–79. http://dx.doi.org/10.1016/j.esd.2010.09.002.
Pełny tekst źródłaKhavanov, Pavel Aleksandrovich, i Anatoliy Sergeevich Chulenyov. "Autonomous solar plants for heat supply". Agrarian Scientific Journal, nr 4 (20.04.2022): 99–102. http://dx.doi.org/10.28983/asj.y2022i4pp99-102.
Pełny tekst źródłaKhavanov, Pavel Aleksandrovich, i Anatoliy Sergeevich Chulenyov. "Autonomous solar plants for heat supply". Agrarian Scientific Journal, nr 4 (20.04.2022): 99–102. http://dx.doi.org/10.28983/asj.y2022i4pp99-102.
Pełny tekst źródłaZarza, Eduardo, Loreto Valenzuela, Javier Leo´n, H. Dieter Weyers, Martin Eickhoff, Markus Eck i Klaus Hennecke. "The DISS Project: Direct Steam Generation in Parabolic Trough Systems. Operation and Maintenance Experience and Update on Project Status". Journal of Solar Energy Engineering 124, nr 2 (24.04.2002): 126–33. http://dx.doi.org/10.1115/1.1467645.
Pełny tekst źródłaShirole, Ashutosh, Mahesh Wagh i Vivek Kulkarni. "Thermal Performance Comparison of Parabolic Trough Collector (PTC) Using Various Nanofluids". International Journal of Renewable Energy Development 10, nr 4 (27.06.2021): 875–89. http://dx.doi.org/10.14710/ijred.2021.33801.
Pełny tekst źródłaTsgoev, Ruslan S. "Promising Osmotic and Hybrid Electrochemical Power Plants". Vestnik MEI 5, nr 5 (2020): 47–53. http://dx.doi.org/10.24160/1993-6982-2020-5-47-53.
Pełny tekst źródłaGil, J. D., J. A. Romero Ramos, M. Pérez García, M. Martínez Molina, J. Ropero i A. Rodríguez. "Techno-economic assessment of the use of Linear Fresnel Solar Collectors for the supply of heat in traditional fruits and vegetable processing industries in Almeria’s province". Renewable Energy and Power Quality Journal 19 (wrzesień 2021): 511–16. http://dx.doi.org/10.24084/repqj19.332.
Pełny tekst źródłaRozprawy doktorskie na temat "Solar aided thermal power plants"
Cottam, P. J. "Innovation in solar thermal chimney power plants". Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10045417/.
Pełny tekst źródłaEl, Khaja Ragheb Mohamad Fawaz. "Solar-thermal hybridization of Advanced Zero Emissions Power Plants". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/74434.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 43-44).
Carbon Dioxide emissions from power production are believed to have significant contributions to the greenhouse effect and global warming. Alternative energy resources, such as solar radiation, may help abate emissions but suffer from high costs of power production and temporal variations. On the other hand, Carbon Capture and Sequestration allows the continued use of fossil fuels without the CO2 emissions but it comes at an energetic penalty. The Advanced Zero Emissions Plant (AZEP) minimizes this energy loss by making use of Ion Transport Membrane (ITM)-based oxy-combustion to reduce the cost of carbon dioxide separation. This work seeks to assess if there are any thermodynamic gains from hybridizing solar-thermal energy with AZEP. The particular focus is hybridizing of the bottoming cycle with supplemental solar heating. A simple model of parabolic solar trough was used to hybridize a model of the AZEP cycle in ASPEN Plus*. Two cycle configurations are studied: the first uses solar parabolic troughs to indirectly vaporize high pressure steam through Therminol and the second uses parabolic troughs to directly preheat the high pressure water stream prior to vaporization. Simulations of the solar vaporizer hybrid by varying the total area of collectors (holding fuel input constant) show an increase of net electric output from 439MW for the non-hybridized AZEP to 533MW with an input solar share of 38.8%. The incremental solar efficiency is found to be around 16% for solar shares of input ranging from 5% to 38.8%. Moreover, simulations of variable solar insolation for collector area of 550,000 m2 , show that incremental solar efficiency increased with solar insolation reaching a plateau around 17%. Simulations of the direct solar preheater, show a net electric output of 501.3 MW for a solar share of 35%, (an incremental solar efficiency of 13.73%). The power generation and hence incremental efficiency is lower than in hybridization with steam vaporization with the same input solar share. Synergy analysis for the steam vaporization hybrid indicates no thermodynamic gains from hybridization.
by Ragheb Mohamad Fawaz El Khaja.
S.B.
Allen, Kenneth Guy. "Rock bed thermal storage for concentrating solar power plants". Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86521.
Pełny tekst źródłaENGLISH ABSTRACT: Concentrating solar power plants are a promising means of generating electricity. However, they are dependent on the sun as a source of energy, and require thermal storage to supply power on demand. At present thermal storage – usually molten salt – although functional, is expensive, and a cheaper solution is desired. It is proposed that sensible heat storage in a packed bed of rock, with air as heat transfer medium, is suitable at temperatures of 500 – 600 °C. To determine if this concept is technically feasible and economically competitive with existing storage, rock properties, packed bed pressure drop and thermal characteristics must be understood. This work addresses these topics. No previously published data is available on thermal cycling resistance of South African rock, and there is limited data from other countries in the proposed temperature range for long-term thermal cycling, so samples were thermally cycled. There is rock which is suitable for thermal storage applications at temperatures of 500 – 600 °C. New maps of South Africa showing where potentially suitable rock is available were produced. Dolerite, found extensively in the Karoo, is particularly suitable. Friction factors were measured for beds of different particles to determine the importance of roughness, shape, and packing arrangement. Five sets of rock were also tested, giving a combined dataset broader than published in any previous study. Limitations of existing correlations are shown. The friction factor is highly dependent on particle shape and, in the case of asymmetric particles, packing method. The friction factor varied by up to 70 % for crushed rock depending on the direction in which it was poured into the test section, probably caused by the orientation of the asymmetric rock relative to the air flow direction. This has not been reported before for rock beds. New isothermal correlations using the volume equivalent particle diameter are given: they are within 15 % of the measurements. This work will allow a techno-economic evaluation of crushed rock beds using more accurate predictions of pumping power than could previously be made. Thermal tests below 80 °C show that bed heat transfer is insensitive to particle shape or type. A heat transfer correlation for air in terms of the volume equivalent diameter was formulated and combined with the E-NTU method. The predicted bed outlet temperatures are within 5 °C of the measurements for tests at 530 °C, showing that the influence of thermal conduction and radiation can be reasonably negligible for a single charge/discharge cycle at mass fluxes around 0.2 kg/m2s. A novel method for finding the optimum particle size and bed length is given: The Biot number is fixed, and the net income (income less bed cost) from a steam cycle supplied by heat from the bed is calculated. A simplified calculation using the method shows that the optimum particle size is approximately 20 mm for bed lengths of 6 – 7 m. Depending on the containment design and cost, the capital cost could be an order of magnitude lower than a nitrate salt system.
AFRIKAANSE OPSOMMING: Gekonsentreerde son-energie kragstasies is n belowende manier om elektrisiteit op te wek, maar hulle is afhanklik van die son as n bron van energie. Om drywing op aanvraag te voorsien moet hulle energie stoor. Tans is termiese stoor – gewoonlik gesmelte sout – hoewel funksioneel, duur, en n goedkoper oplossing word gesoek. Daar word voorgestel dat stoor van voelbare warmte-energie in n gepakte rotsbed met lug as warmteoordrag medium geskik is by temperature van 500 – 600 °C. Om te bepaal of dié konsep tegnies gangbaar en ekonomies mededingend met bestaande stoorstelsels is, moet rotseienskappe, gepakte bed drukval en hitteoordrag verstaan word. Hierdie werk spreek hierdie aspekte aan. Geen voorheen gepubliseerde data is beskikbaar oor die termiese siklus weerstand van Suid-Afrikaanse rots nie, en daar is beperkte data van ander lande in die voorgestelde temperatuurbereik, dus is monsters onderwerp aan termiese siklusse. Daar bestaan rots wat geskik is vir termiese stoor toepassings by temperature van 500 – 600 °C. Nuwe kaarte van Suid-Afrika is opgestel om te wys waar potensieel geskikte rots beskikbaar is. Doleriet, wat wyd in die Karoo voor kom, blyk om veral geskik te wees. Wrywingsfaktore is gemeet vir beddens van verskillende partikels om die belangrikheid van grofheid, vorm en pak-rangskikking te bepaal. Vyf rotsstelle is ook getoets, wat n saamgestelde datastel gee wyer as in enige gepubliseerde studie. Beperkings van bestaande korrelasies word aangetoon. Die wrywingsfaktor is hoogs sensitief vir partikelvorm en, in die geval van asimmetriese partikels, pakkings metode. Die wrywingsfaktor het met tot 70 % gevarieer vir gebreekte rots, afhanklik van die rigting waarin dit in die toetsseksie neergelê is. Dit is waarskynlik veroorsaak deur die oriëntasie van die asimmetriese rots relatief tot die lugvloei rigting, en is nie voorheen vir rotsbeddens gerapporteer nie. Nuwe isotermiese korrelasies wat gebruik maak van die volume-ekwivalente partikel deursnee word gegee: hulle voorspel binne 15 % van die gemete waardes. Hierdie werk sal n tegno-ekonomiese studie van rotsbeddens toelaat wat meer akkurate voorspellings van pompdrywing gebruik as voorheen moontlik was. Termiese toetse onder 80 °C wys dat die warmteoordrag nie baie sensitief is vir partikelvorm en -tipe nie. n Warmte-oordragskorrelasie vir lug in terme van die volume-ekwivalente deursnee is ontwikkel en met die E-NTU-metode gekombineer. Die voorspelde lug uitlaat temperatuur is binne 5 °C van die meting vir toetse by 530 °C. Dit wys dat termiese geleiding en straling redelikerwys buite rekening gelaat kan word vir n enkele laai/ontlaai siklus by massa vloeitempos van omtrent 0.2 kg/m2s. n Oorspronklike metode vir die bepaling van die optimum partikelgrootte en bedlengte word gegee: Die Biot-getal is vas, en die netto inkomste (die inkomste minus die bed omkoste) van n stoomsiklus voorsien met warmte van die bed word bereken. n Vereenvoudigde berekening wat die metode gebruik wys dat die optimum grootte en lengte ongeveer 20 mm en 6-7 m is. Afhangende van die behoueringsontwerp en koste, kan die kapitale koste n orde kleiner wees as dié van n gesmelte nitraatsout stelsel
Allen, Kenneth Guy. "Performance characteristics of packed bed thermal energy storage for solar thermal power plants". Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4329.
Pełny tekst źródłaENGLISH ABSTRACT: Solar energy is by far the greatest energy resource available to generate power. One of the difficulties of using solar energy is that it is not available 24 hours per day - some form of storage is required if electricity generation at night or during cloudy periods is necessary. If a combined cycle power plant is used to obtain higher efficiencies, and reduce the cost of electricity, storage will allow the secondary cycle to operate independently of the primary cycle. This study focuses on the use of packed beds of rock or slag, with air as a heat transfer medium, to store thermal energy in a solar thermal power plant at temperatures sufficiently high for a Rankine steam cycle. Experimental tests were done in a packed bed test section to determine the validity of existing equations and models for predicting the pressure drop and fluid temperatures during charging and discharging. Three different sets of rocks were tested, and the average size, specific heat capacity and density of each set were measured. Rock and slag samples were also thermally cycled between average temperatures of 30 ºC and 510 ºC in an oven. The classical pressure drop equation significantly under-predicts the pressure drop at particle Reynolds numbers lower than 3500. It appears that the pressure drop through a packed bed is proportional to the 1.8th power of the air flow speed at particle Reynolds numbers above about 500. The Effectiveness-NTU model combined with a variety of heat transfer correlations is able to predict the air temperature trend over the bed within 15 % of the measured temperature drop over the packed bed. Dolerite and granite rocks were also thermally cycled 125 times in an oven without breaking apart, and may be suitable for use as thermal storage media at temperatures of approximately 500 ºC. The required volume of a packed bed of 0.1 m particles to store the thermal energy from the exhaust of a 100 MWe gas turbine operating for 8 hours is predicted to be 24 × 103 m3, which should be sufficient to run a 25-30 MWe steam cycle for over 10 hours. This storage volume is of a similar magnitude to existing molten salt thermal storage.
AFRIKAANSE OPSOMMING: Sonenergie is die grootste energiebron wat gebruik kan word vir krag opwekking. ‘n Probleem met die gebruik van sonenergie is dat die son nie 24 uur per dag skyn nie. Dit is dus nodig om die energie te stoor indien dit nodig sal wees om elektrisiteit te genereer wanneer die son nie skyn nie. ‘n Gekombineerde kringloop kan gebruik word om ‘n hoër benuttingsgraad te bereik en elektrisiteit goedkoper te maak. Dit sal dan moontlik wees om die termiese energie uit die primêre kringloop te stoor, wat die sekondêre kringloop onafhanklik van die primêre kringloop sal maak. Dié gevalle studie ondersoek die gebruik van ‘n slakof- klipbed met lug as hitteoordragmedium, om te bepaal of dit moontlik is om hitte te stoor teen ‘n temperatuur wat hoog genoeg is om ‘n Rankine stoom kringloop te bedryf. Eksperimentele toetse is in ‘n toets-bed gedoen en die drukverandering oor die bed en die lug temperatuur is gemeet en vergelyk met voorspelde waardes van vergelykings en modelle in die literatuur. Drie soorte klippe was getoets. Die gemiddelde grootte, spesifieke hitte-kapasiteit en digtheid van elke soort klip is gemeet. Klip en slak monsters is ook siklies tussen temperature van 30 ºC en 510 ºC verkoel en verhit. Die klassieke drukverlies vergelyking gee laer waardes as wat gemeet is vir Reynolds nommers minder as 3500. Dit blyk dat die drukverlies deur ‘n klipbed afhanklik is van die lug vloeispoed tot die mag 1.8 as die Reynolds nommer groter as omtrent 500 is. Die ‘Effectiveness-NTU’ model gekombineerd met ‘n verskeidenheid van hitteoordragskoeffisiënte voorspel temperature binne 15 % van die gemete temperatuur verskil oor die bed. Doloriet en graniet klippe het 125 sikliese toetse ondergaan sonder om te breek, en is miskien gepas vir gebruik in ‘n klipbed by temperature van sowat 500 ºC Die voorspelde volume van ‘n klipbed wat uit 0.1 m klippe bestaan wat die termiese energie vir 8 ure uit die uitlaat van ‘n 100 MWe gasturbiene kan stoor, is 24 × 103 m3. Dit behoort genoeg te wees om ‘n 25 – 30 MWe stoom kringloop vir ten minste 10 ure te bedryf. Die volume is min of meer gelyk aan dié van gesmelte sout store wat alreeds gebou is.
Darwish, Mazen. "Modular Hybridization of Solar Thermal Power Plants For Developing Nations". Thesis, KTH, Kraft- och värmeteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104456.
Pełny tekst źródłaMiranda, Gilda. "Dispatch Optimizer for Concentrated Solar Power Plants". Thesis, Uppsala universitet, Byggteknik och byggd miljö, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-402436.
Pełny tekst źródłaNixon, Jonathan. "Solar thermal collectors for use in hybrid solar-biomass power plants in India". Thesis, Aston University, 2012. http://publications.aston.ac.uk/18722/.
Pełny tekst źródłaFernandez-Munoz, Raul. "Design of solar power plant with coupled thermal storage". Thesis, Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/16722.
Pełny tekst źródłaSpelling, James. "Hybrid Solar Gas-Turbine Power Plants : A Thermoeconomic Analysis". Doctoral thesis, KTH, Kraft- och värmeteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121315.
Pełny tekst źródłaHållbar energiförsörjning är för närvarande en av de viktigaste frågorna förmänskligheten. Koncentrerad solenergi är nu etablerad som en tillförlitlig källaav förnybar energi. Den reglerbara karaktären hos tekniken gör den specielltintressant för uppbyggnaden av ett framtida koldioxidsnålt elsystem.Kostnaden för elektricitet från nuvarande termiska solkraftverk är hög trottsflera decennier av utveckling. Ett genombrått på tekniknivå krävs för att drivaned kostnaderna. Sol-gasturbiner är ett av de mest lovande alternativen, somger en ökad verkningsgrad samtidigt som vattenkonsumtionen reducerasdrastiskt. Sol-gasturbintekniken gör det möjligt att blandköra solenergi ochandra bränslen för att möta efterfrågan vid alla tidpunkter, en attraktiv aspekt iförhållande till alternativa lösningar.Uppbyggnaden av första generationens kommersiella hybrida solgasturbinkraftverkförsvåras dock av bristen på etablerade och standardiseradekraftverkskonfigurationer. Dessa ger planeraren ett stort antal valmöjlighetersom underlag för beslutsfattande. Termoekonomiska studier har genomförtsför ett flertal olika kraftverkskonfigurationer, däribland kraftverk med enkelcykel, kombikraftverk samt möjligheten att utnyttja termisk energilagring.Pareto-optimala konfigurationer har identifierats med hjälp av multiobjektsoptimeringför att belysa balansen mellan kostnader och utsläpp.Analysen av det enkla hybrida sol-gasturbinkraftverket visade attelektricitetskostnaden hållits på en låg nivå, men att den möjliga minskningen avkoldioxidutsläpp är relativt liten. Dessutom identifierades en inre balans mellanatt bibehålla en hög verkningsgrad hos konfigurationen och en hög andelsolenergi i produktionen. Andelen av solenergi i gasturbinen överskred aldrig63% på årlig bas, även med optimerade kraftverkskonfigurationer.Två förbättringar föreslås för att övervinna begränsningarna hos kraftverk medenkel cykel: integration av termisk energilagring samt nyttjande avkombikraftverkskonfigurationer. Termisk energilagring tillåter en ökad andelsolenergi i driften och reducerar koldioxidutsläppen drastiskt, medan denytterligare cykeln hos kombikraftverket reducerar elektricitetskostnaden.Kombinationen av dessa förbättringar ger den bästa prestandan, med enreduktion av koldioxidutsläppen på upp till 34% och reducerade elektricitetskostnaderpå upp till 22% i jämförelse med andra kombinationer avkonventionella kraftverkskonfigurationer.
QC 20130503
Kretzschmar, Holger. "The Hybrid Pressurized Air Receiver (HPAR) for combined cycle solar thermal power plants". Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86377.
Pełny tekst źródłaENGLISH ABSTRACT: Concentrating solar power technology is a modern power generation technology in which central receiver systems play a significant role. For this technology a field of heliostats is used to reflect solar irradiation to the receiver located on top of the tower. An extensive review has shown that contemporary receiver designs face geometric complexities, lack of thermal efficiency as well as issues with durability and cost. The purpose of this study is to develop a new receiver concept that can potentially reduce these issues. A parametric analysis was used to identify potential means of improvement based on an energy balance approach including sensitivities involved with convection and radiation heat transfer. Design criteria such as the use of headers to minimize pressure drop was also investigated. Based on these findings the hybrid pressurized air receiver was developed which is a combination of tubular and volumetric receiver technologies. The fundamental idea of the receiver was investigated by simulating the ray-tracing and coupled natural convection and radiation heat transfer. The ray-tracing results have shown that the use of quartz glass is a prospective solution to higher allowable flux densities, but with reflection losses in the order of 7 %. The coupled natural convection heat transfer simulation further revealed that the receiver concept effectively eliminates the escape of buoyant plumes and radiative heat losses are minimized. Empirical data was gathered from a medium flux concentrator and good agreement with the numerical results was obtained. The thesis therefore concludes that the research outcomes were met. Ongoing research aims to optimise the receiver concept for a 5MW pilot plant.
AFRIKAANSE OPSOMMING: Gekonsentreerde sonkrag tegnologie is ’n moderne kragopwekkingstegnologie waar sentrale ontvangersisteme ’n beduidende rol speel. Vir hierdie tegnologie word ’n veld heliostate gebruik om sonstraling na die ontvanger wat aan die bopunt van die toring geleë is te reflekteer. ’n Omvattende hersiening het daarop gewys dat kontemporêre ontwerpe van die ontvangers ’n aantal geometriese kompleksiteite, ’n tekort aan termiese doeltreffendheid sowel as probleme in terme van duursaamheid en koste in die gesig staar. Die doel van die studie is om ’n nuwe ontvangerskonsep te ontwikkel wat moontlik hierdie probleme kan verminder. ’n Parametriese analise is gebruik om potensiële maniere van verbetering aan te dui wat gebaseer is op ’n energiebalans benadering; insluitend sensitiwiteite betrokke by konvektiewe en stralingswarmteoordrag. Ontwerpkriteria soos die gebruik van spruitstukke om drukverliese te minimaliseer is ook ondersoek. Gebaseer op hierdie bevindinge is die hibriede saamgepersde-lug ontvanger ontwikkel. Laasgenoemde is ’n kombinasie van buis- en volumetriese ontvangertegnologie. Die fundamentele idee van die ontvanger is ondersoek deur straalberekening asook die gelyktydige natuurlike konveksie en stralingswarmteoordrag te simuleer. Die straalberekeningsresultate het getoon dat die gebruik van kwarts glas ’n moontlike oplossing is om hoër stralingsintensiteit te bereik, maar met refleksieverliese in die orde van 7 %. Die gelyktydige natuurlike konveksie en stralingswarmteoordrag simulasie het verder aan die lig gebring dat die ontvangerkonsep die ontsnapping
Książki na temat "Solar aided thermal power plants"
Casal, Federico G. Solar Thermal Power Plants. Redaktorzy Paul Kesselring i Carl-Jochen Winter. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-52281-9.
Pełny tekst źródłaKesselring, Paul, i Clifford S. Selvage, red. The IEA/SSPS Solar Thermal Power Plants. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82680-1.
Pełny tekst źródłaKesselring, Paul, i Clifford S. Selvage, red. The IEA/SSPS Solar Thermal Power Plants. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82682-5.
Pełny tekst źródłaCamacho, E. F. Advanced control of solar plants. Berlin: Springer, 1997.
Znajdź pełny tekst źródłaPetela, Ryszard. Engineering thermodynamics of thermal radiation for solar power utilization. New York: McGraw Hill, 2010.
Znajdź pełny tekst źródłaEngineering thermodynamics of thermal radiation for solar power utilization. New York: McGraw Hill, 2010.
Znajdź pełny tekst źródłaKarni, Jacob. Development of a solar-thermal volumetric receiver: Final report for the period October 1990-March 1991. [Jerusalem]: State of Israel, Ministry of Energy and Infrastructure Division of Research and Development, 1991.
Znajdź pełny tekst źródłaM, Becker, Klimas Paul C, Chavez James M, Kolb Gregory J, Meinecke W, Deutsche Forschungsanstalt für Luft- und Raumfahrt. i Sandia National Laboratories, red. Second generation central receiver technologies: A status report. Karlsruhe: C.F. Müller, 1993.
Znajdź pełny tekst źródłaMa, Zhiwen. Advanced supercritical carbon dioxide power cycle configurations for use in concentrating solar power systems: Preprint. Golden, CO]: National Renewable Energy Laboratory, 2011.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. A program for the calculation of paraboloidal-dish solar thermal power plants performance. Pasadena, Calif: National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, 1985.
Znajdź pełny tekst źródłaCzęści książek na temat "Solar aided thermal power plants"
Becker, M., i L. L. Vant-Hull. "Thermal Receivers". W Solar Power Plants, 163–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_5.
Pełny tekst źródłaKumar, Rajesh, Ravi Anand i Sujit Karmakar. "Thermodynamic Analysis of a 500-MWe Subcritical Coal-Fired Thermal Power Plant with Solar-Aided Post-Combustion CO2 Capture". W Advances in Mechanical Engineering, 907–19. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0124-1_81.
Pełny tekst źródłaGrasse, W., H. P. Hertlein, C. J. Winter i G. W. Braun. "Thermal Solar Power Plants Experience". W Solar Power Plants, 215–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_7.
Pełny tekst źródłaKesselring, P., i C. J. Winter. "Solar Thermal Power Plants". W Solar Thermal Central Receiver Systems, 3–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82910-9_1.
Pełny tekst źródłaGeyer, M. A. "Thermal Storage for Solar Power Plants". W Solar Power Plants, 199–214. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_6.
Pełny tekst źródłaSingh, Shailendra Pratap, Subrata Kumar Ghosh i Vijay Kumar Dwivedi. "An Analytic Hierarchy Process (AHP)-Based Multi-criteria Evaluation and Priority Analysis for Best FWH Substitution of Solar Aided Thermal Power Plant". W Proceedings of International Conference in Mechanical and Energy Technology, 707–17. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2647-3_66.
Pełny tekst źródłaCasal, Federico G. "Introduction". W Solar Thermal Power Plants, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-52281-9_1.
Pełny tekst źródłaCasal, Federico G. "Description of the SSPS Site". W Solar Thermal Power Plants, 5–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-52281-9_2.
Pełny tekst źródłaCasal, Federico G. "The Central Receiver System". W Solar Thermal Power Plants, 11–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-52281-9_3.
Pełny tekst źródłaCasal, Federico G. "The Distributed Collector System". W Solar Thermal Power Plants, 55–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-52281-9_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Solar aided thermal power plants"
Cipollone, Roberto, i Andrea Cinocca. "Integration Between Gas Turbines and Concentrated Parabolic Trough Solar Power Plants". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-85874.
Pełny tekst źródłaZarza, Eduardo, Loreto Valenzuela, Javier León, H. Dieter Weyers, Martin Eickhoff, Markus Eck i Klaus Hennecke. "The DISS Project: Direct Steam Generation in Parabolic Troughs — Operation and Maintenance Experience — Update on Project Status". W ASME 2001 Solar Engineering: International Solar Energy Conference (FORUM 2001: Solar Energy — The Power to Choose). American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/sed2001-154.
Pełny tekst źródłaAhmed, Khaled I. E., Ali K. Abdel-Rahman, Mahmoud Ahmed i Wael M. Khairaldien. "Virtual Height Aided Solar Chimney: A New Design". W ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65819.
Pełny tekst źródłaCrespi, Francesco, David Sánchez, Tomás Sánchez i Gonzalo S. Martínez. "Integral Techno-Economic Analysis of Supercritical Carbon Dioxide Cycles for Concentrated Solar Power". W ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-77106.
Pełny tekst źródłaHeide, Stephan, Uwe Gampe, Ulrich Orth, Markus Beukenberg, Bernd Gericke, Manfred Freimark, Ulrich Langnickel, Robert Pitz-Paal, Reiner Buck i Stefano Giuliano. "Design and Operational Aspects of Gas and Steam Turbines for the Novel Solar Hybrid Combined Cycle SHCC®". W ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-22124.
Pełny tekst źródłaHammad, M., A. Al-Qtiemat i A. Alshqirate. "Modeling and Analysis of the Performance of a Parabolic Trough Solar Concentrator System". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63411.
Pełny tekst źródłaLevine, Jonathan S., Klaus S. Lackner i Vijay Modi. "Nearly Reversible Heat Engines for Thermal Storage of Excess Electric Power". W ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14704.
Pełny tekst źródłaHu, Eric J., Ying You i Y. C. Li. "SOLAR THERMAL POWER OR SOLAR AIDED THERMAL POWER?: A CHOICE BETWEEN EFFICIENCIES". W Proceedings of the Third Asia-Pacific Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812791924_0070.
Pełny tekst źródłaGoswami, Jaya. "Dry Cooling in Solar Thermal Power Plants". W ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54396.
Pełny tekst źródłaAmeri, Mohammad, i Hamid Reza Moosavi. "A comparison between solar field and supplementary firing for generating additional power in solar hybrid power plant". W 2014 5th Conference on Thermal Power Plants (CTPP). IEEE, 2014. http://dx.doi.org/10.1109/ctpp.2014.7040609.
Pełny tekst źródłaRaporty organizacyjne na temat "Solar aided thermal power plants"
Linker, K. Heat engine development for solar thermal dish-electric power plants. Office of Scientific and Technical Information (OSTI), listopad 1986. http://dx.doi.org/10.2172/7228892.
Pełny tekst źródłaMaxwell, E. L., i M. D. Rymes. The impact of solar radiation resources on the siting of solar thermal power plants. Office of Scientific and Technical Information (OSTI), grudzień 1988. http://dx.doi.org/10.2172/6016955.
Pełny tekst źródłaKuver, Walt. Tax Revenue and Job Benefits from Solar Thermal Power Plants in Nye County. Office of Scientific and Technical Information (OSTI), listopad 2009. http://dx.doi.org/10.2172/1129448.
Pełny tekst źródłaGawlik, Keith. Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants. Office of Scientific and Technical Information (OSTI), czerwiec 2013. http://dx.doi.org/10.2172/1090094.
Pełny tekst źródłaByers, R. Application of RELAP4/MOD6 to analysis of solar-thermal power plants: control system modelling. Office of Scientific and Technical Information (OSTI), kwiecień 1986. http://dx.doi.org/10.2172/5554016.
Pełny tekst źródłaEhrhart, Brian, i David Gill. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage. Office of Scientific and Technical Information (OSTI), lipiec 2013. http://dx.doi.org/10.2172/1090218.
Pełny tekst źródłaKelly, Michael, Paul Hlava i Douglas Brosseau. Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants. Office of Scientific and Technical Information (OSTI), lipiec 2004. http://dx.doi.org/10.2172/919178.
Pełny tekst źródłaParabolic Trough Solar Thermal Electric Power Plants (Fact Sheet). Office of Scientific and Technical Information (OSTI), lipiec 2006. http://dx.doi.org/10.2172/887007.
Pełny tekst źródła