Gotowa bibliografia na temat „Sol-gel”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Sol-gel”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Sol-gel"
Shkuropatenko, V. A. "Sol-gel synthesis of NZP phosphates". Functional materials 23, nr 1 (15.03.2016): 92–97. http://dx.doi.org/10.15407/fm23.01.092.
Pełny tekst źródłaMACKENZIE, John D. "Sol-Gel Optics". Journal of the Ceramic Society of Japan 101, nr 1169 (1993): 1–10. http://dx.doi.org/10.2109/jcersj.101.1.
Pełny tekst źródłaNAKAZUMI, Hiroyuki. "Sol-Gel Process". Journal of the Japan Society of Colour Material 68, nr 4 (1995): 245–51. http://dx.doi.org/10.4011/shikizai1937.68.245.
Pełny tekst źródłaLivage, J. "Sol-gel processes". Current Opinion in Solid State and Materials Science 2, nr 2 (kwiecień 1997): 132–38. http://dx.doi.org/10.1016/s1359-0286(97)80057-5.
Pełny tekst źródłaLivage, J., i C. Sanchez. "Sol-gel chemistry". Journal of Non-Crystalline Solids 145 (styczeń 1992): 11–19. http://dx.doi.org/10.1016/s0022-3093(05)80422-3.
Pełny tekst źródłaMoszner, Norbert, Alexandros Gianasmidis, Simone Klapdohr, Urs Karl Fischer i Volker Rheinberger. "Sol–gel materials". Dental Materials 24, nr 6 (czerwiec 2008): 851–56. http://dx.doi.org/10.1016/j.dental.2007.10.004.
Pełny tekst źródłaLIVAGE, J. "Sol-gel ionics". Solid State Ionics 50, nr 3-4 (luty 1992): 307–13. http://dx.doi.org/10.1016/0167-2738(92)90234-g.
Pełny tekst źródłaSchmidt, H. "Sol-Gel-Processing". Physik Journal 45, nr 10 (październik 1989): 418–19. http://dx.doi.org/10.1002/phbl.19890451014.
Pełny tekst źródłaSchubert, Ulrich. "Sol-Gel-Chemie". Chemie in unserer Zeit 52, nr 1 (8.09.2017): 18–25. http://dx.doi.org/10.1002/ciuz.201700792.
Pełny tekst źródłaReuter, Hans. "Sol-gel processes". Advanced Materials 3, nr 5 (maj 1991): 258–59. http://dx.doi.org/10.1002/adma.19910030510.
Pełny tekst źródłaRozprawy doktorskie na temat "Sol-gel"
Yang, Quanzu. "Composite sol-gel ceramics". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0019/NQ46453.pdf.
Pełny tekst źródłaZheng, Lei. "Cobaltferrite-bariumtitanate sol-gel biferroics". College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3648.
Pełny tekst źródłaThesis research directed by: Dept. of Material Science and Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Gardener, Martin. "Studies in sol-gel chemistry". Thesis, Nottingham Trent University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341276.
Pełny tekst źródłaBorislav, Simendić. "Niskotemperaturno procesiranje sol-gel mulita". Phd thesis, Univerzitet u Novom Sadu, Tehnološki fakultet Novi Sad, 2003. https://www.cris.uns.ac.rs/record.jsf?recordId=71471&source=NDLTD&language=en.
Pełny tekst źródłaAbstract was processed by technology for Optical character recognition (OCR).The mechanism of mullite formation depends upon the method of combining the alumina and silica containing reactants. Mullite can be obtained through the sol-gel process and can be greatly improved by the control of some reaction conditions particulaiiy by homogeneous mixing of Al2O3 and SiO2, and controlling of the additions. Sol-gel method allow preparation of very homogenous and reactive gels which can be sintering at low temperature and consequently submicronic microstructure can be reached. In this study of the mullite formation by sol-gel method, the hypothesis was that aluminium ions from alcoholic solulion of its salts incorporate to polymeric silica gel structure. The aim of this work was the investigation of the effect processing variables, fluorine addition and “seeding”on the temperature of sol-gel mullite formation and to obtain as lower temperature of mullite formation as possible (smaller than 980°C). Polymeric sols, were prepared by the mixing of TEOS and aluminum nitrate nanohydrate dissolved in absolute ethyl alcohol and by adding fluorine ions in the second case from 2 wt.% to 5 wt.% and by different content of mullite seeded (2- 4 wt. %). Experimentally is determined that the processing variables as pH, gelling temperature and R ratio have high influence on the gelling rate and mullite formation. The hypothesis in the case of fluorine addition was that addition of fluorine ions could have different effects on the mechanism of mullite formation; the first it makes the sites at boundary of phase separation regions after gelling which influence at the process of the nucleation. These sites will act as a place for easy mullite nucleation, similar to process of the glass crystallization. The boundaries of the phase separation are the sites for heterogeneous nucleation which is one of the condition for lowering the temperature of mullite formation. Besides, fluorine addition could change the mullite gel structure (by changing the rate of hydrolyses of silica and it could change the content of bonded water during gelling), which should be very important for the temperature of mullite formation, too. The experimental results of heat treated gels showed that the addition of fluorine ion does decrease the temperature of mullite formation (in respect to classical sol-gel mullite processing) up to 8900C. As a nucleant in this study the mullite powder by “seeding” process contribute to muillite gel formation that after heat treatment up to 10000C showed very fine microstructure.
Pohl, Annika. "Sol−Gel Synthesis of CMR Manganites". Doctoral thesis, Uppsala University, Department of Materials Chemistry, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3970.
Pełny tekst źródłaThe development of more advanced materials forms the basis of technological progress. One group of fascinating compounds with many potential applications in spintronic devices are the mixed-valence perovskite manganites. These have attracted considerable interest during the last decade through their very large magnetoresistance near the Curie Temperature. Although the properties of a material determinie any application, the development of reliable and flexible synthesis methods is crucial, as is the understanding of these methods. Knowledge of how different materials are formed is also of general importance in tailoring new materials. The aim of this project has therefore been not only to develop a new synthesis route, but also to understand the mechanisms involved.
This thesis describes the synthesis and characterization of a novel manganese alkoxide and its use in sol–gel processing of magnetoresistive perovskite manganites. In searching for a soluble manganese alkoxide for sol–gel processing, we found that the methoxy-ethoxide, [Mn19O12(moe)14(moeH)10]·moeH, has a high solubility in appropriate organic solvents. Being 1.65 nm across, it is one of the largest alkoxides reported; it is also of interest because of its (for oxo-alkoxides) rare planar structure. After mixing with La, Nd, Ca, Sr, and Ba methoxy-ethoxides, [Mn19O12(moe)14(moeH)10]·moeH was used in the first purely alkoxide based sol–gel processing of perovskites manganites. The phase evolution on heating xerogel powders to 1000°C was studied, and thin films were prepared by spin-coating.
It was found that the easily oxidised Mn-alkoxide facilitates the formation of high oxygen-excess modifications of the perovskites. The reactive precursor system yields fully hydrolysed gels almost without organic residues, but the gel absorbs CO2 from the air, leading to carbonate formation. The carbonate decomposition is the limiting step in oxide formation. Transport measurements of La0.67Ca0.33MnO3 films on LaAlO3 substrate show that all-alkoxide sol–gel derived films can compete with PLD films in terms of quality of epitaxy and transport. The somewhat different behaviour of the sol–gel derived films compared to PLD films is attributed to differences in morphology and oxygen stoichiometry.
Barreau, Stephanie. "Biosensing with sol-gel-immobilised proteins". Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/27275.
Pełny tekst źródłaNoureddine, Achraf. "Approches Click en Chimie Sol-Gel". Thesis, Montpellier, Ecole nationale supérieure de chimie, 2014. http://www.theses.fr/2014ENCM0005/document.
Pełny tekst źródłaThe present work aims to develop a trustful methodology of functionalization for hybrid silica materials made by the sol-gel process using the copper-catalyzed alkyne-azide cycloaddition (CuAAC)Click reaction. This transformation can be highly useful in materials science thanks to its high conversions and the excellent functional group tolerance. In this prospect, we have synthesized fully clickable bridged silisesquioxanes and periodic mesoporous organosilica that show high extents of click grafting. CuAAC was then used for tailoring the surface of bridged silsesquioxane and fine-tuning the hydrophilic/lipophilic balance. Finally, the click reaction was used as an efficient way to obtain multiply functionalized mesoporous silica nanoparticles in order to make nanomachines for controlled delivery of cargo molecules
Stani´c, Vesha. "Sol-gel processing of metal sulfides". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21641.pdf.
Pełny tekst źródłaChisham, Jason E. (Jason Edward). "Sol-gel materials for integrated optics". Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23992.
Pełny tekst źródłaBellatone, Maria. "Sol-gel derived antimicrobial bioactive glass". Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394943.
Pełny tekst źródłaKsiążki na temat "Sol-gel"
Klein, Lisa C., red. Sol-Gel Optics. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2750-3.
Pełny tekst źródłaGuglielmi, Massimo, Guido Kickelbick i Alessandro Martucci, red. Sol-Gel Nanocomposites. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1209-4.
Pełny tekst źródłaLevy, David, i Marcos Zayat, red. The Sol-Gel Handbook. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527670819.
Pełny tekst źródłaW, Scherer George, red. Sol-gel science: The physics and chemistry of sol-gel processing. Boston: Academic Press, 1990.
Znajdź pełny tekst źródłaAttia, Yosry A., red. Sol-Gel Processing and Applications. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2570-7.
Pełny tekst źródłaPierre, Alain C. Introduction to Sol-Gel Processing. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5659-6.
Pełny tekst źródłaInnocenzi, Plinio. The Sol to Gel Transition. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39718-4.
Pełny tekst źródłaPierre, Alain C. Introduction to Sol-Gel Processing. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38144-8.
Pełny tekst źródłaInnocenzi, Plinio. The Sol-to-Gel Transition. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20030-5.
Pełny tekst źródłaPierre, Alain C. Introduction to sol-gel processing. Boston: Kluwer Academic Publishers, 1998.
Znajdź pełny tekst źródłaCzęści książek na temat "Sol-gel"
Johnson, D. W. "Sol-Gel". W Inorganic Reactions and Methods, 9–10. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch5.
Pełny tekst źródłaRabinovich, Eliezer M. "Sol Gel Processing — General Principles". W Sol-Gel Optics, 1–37. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2750-3_1.
Pełny tekst źródłaKlein, Lisa C. "Nanocomposite Fabrication for Transparent Windows". W Sol-Gel Optics, 215–32. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2750-3_10.
Pełny tekst źródłaGanguli, Dibyendu. "Single Layer and Multilayer Colored Coatings on Glass". W Sol-Gel Optics, 233–54. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2750-3_11.
Pełny tekst źródłaSayer, M., i G. Yi. "Sol Gel Processing of Ferroelectric Films". W Sol-Gel Optics, 255–77. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2750-3_12.
Pełny tekst źródłaShahriari, M. R., i J. Y. Ding. "Doped Sol-Gel Films for Fiber Optic Chemical Sensors". W Sol-Gel Optics, 279–302. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2750-3_13.
Pełny tekst źródłaZink, Jeffrey I., i Bruce Dunn. "Sol-Gel Encapsulated Molecules: Optical Probes and Optical Properties". W Sol-Gel Optics, 303–28. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2750-3_14.
Pełny tekst źródłaNogami, Masayuki. "Semiconductor-Doped Sol-Gel Optics". W Sol-Gel Optics, 329–44. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2750-3_15.
Pełny tekst źródłaLópez, Tessy, i Ricardo Gómez. "Catalyst Doped Sol-Gel Materials". W Sol-Gel Optics, 345–71. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2750-3_16.
Pełny tekst źródłaChe, Tessie M., Mark A. Banash, Paul R. Soskey i Paul B. Dorain. "Gel Derived Gradient Index Optics — Aspects of Leaching and Diffusion". W Sol-Gel Optics, 373–90. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2750-3_17.
Pełny tekst źródłaStreszczenia konferencji na temat "Sol-gel"
Davis, S. R., A. Wilson i J. D. Wright. "Flammable gas sensors based on sol-gel materials". W IEE Colloquium on Sol-Gel Materials for Device Applications. IEE, 1998. http://dx.doi.org/10.1049/ic:19980581.
Pełny tekst źródłaPhillips, Nicholas J. "Sol-gel technology". W SIRA - DL tentative, redaktor Lionel R. Baker. SPIE, 1992. http://dx.doi.org/10.1117/12.57755.
Pełny tekst źródłaNewport, A., J. Silver i A. Vecht. "Synthesis of luminescent sol gel materials for active electronic devices". W IEE Colloquium on Sol-Gel Materials for Device Applications. IEE, 1998. http://dx.doi.org/10.1049/ic:19980577.
Pełny tekst źródłaSeddon, A. B. "Sol-gel derived organic-inorganic hybrid materials for photonic applications". W IEE Colloquium on Sol-Gel Materials for Device Applications. IEE, 1998. http://dx.doi.org/10.1049/ic:19980582.
Pełny tekst źródłaSale, F. R. "The citrate-gel processing of electronic and magnetic ceramics". W IEE Colloquium on Sol-Gel Materials for Device Applications. IEE, 1998. http://dx.doi.org/10.1049/ic:19980580.
Pełny tekst źródłaPerry, C. "Chemical considerations in the formulation of sol-gel materials for device applications". W IEE Colloquium on Sol-Gel Materials for Device Applications. IEE, 1998. http://dx.doi.org/10.1049/ic:19980578.
Pełny tekst źródłaHodgson, S. N. B., L. Weng i S. M. Tracey. "Sol-gel processing of tellurium oxide thin films for optical data storage application". W IEE Colloquium on Sol-Gel Materials for Device Applications. IEE, 1998. http://dx.doi.org/10.1049/ic:19980579.
Pełny tekst źródłaZhang, Q., R. W. Whatmore, M. E. Vickers i Z. Huang. "Structural studies on sols for PZT thin films". W IEE Colloquium on Sol-Gel Materials for Device Applications. IEE, 1998. http://dx.doi.org/10.1049/ic:19980583.
Pełny tekst źródłaDarracq, B., D. Riehl, M. Canva, Y. Levy i A. Brun. "Photorefractive Sol-Gel Films". W Proceedings of European Meeting on Lasers and Electro-Optics. IEEE, 1996. http://dx.doi.org/10.1109/cleoe.1996.562357.
Pełny tekst źródłaUlatowska-Jarża, A., U. Bindig, H. Podbielska, I. Hołowacz, I. Gersonde, J. Beuthan, G. Müller i H. J. Eichler. "Photoactive sol-gel biocoatings". W SPIE Proceedings, redaktorzy Katarzyna Kolacz i Jacek Sochacki. SPIE, 2006. http://dx.doi.org/10.1117/12.676078.
Pełny tekst źródłaRaporty organizacyjne na temat "Sol-gel"
Caverly, Spencer. LCO Synthesis by Sol-Gel Method. Office of Scientific and Technical Information (OSTI), październik 2024. http://dx.doi.org/10.2172/2463015.
Pełny tekst źródłaYoung, Sandra K. Overview of Sol-Gel Science and Technology. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2002. http://dx.doi.org/10.21236/ada398036.
Pełny tekst źródłaDebsikdar, J., E. Samsel, C. Sellers, K. Telschow i D. Miley. Superconducting film fabrication by the sol-gel process. Office of Scientific and Technical Information (OSTI), wrzesień 1989. http://dx.doi.org/10.2172/5651016.
Pełny tekst źródłaRamamurthi, S. Molecular growth pathways in silica sol-gel polymerization. Office of Scientific and Technical Information (OSTI), styczeń 1989. http://dx.doi.org/10.2172/6236739.
Pełny tekst źródłaSimpson, Randall L., William Hubble, Bradley Stevenson, Alexander Gash, Joe Satcher i Patricia Metcalf. Safe and Environmentally Acceptable Sol-Gel-Derived Pyrophoric Pyrotechnics. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2004. http://dx.doi.org/10.21236/ada438451.
Pełny tekst źródłaBenicewicz, Brian C., Glenn A. Eisman, S. K. Kumar i S. G. Greenbaum. Sol-Gel Based Polybenzimidazole Membranes for Hydrogen Pumping Devices. Office of Scientific and Technical Information (OSTI), luty 2014. http://dx.doi.org/10.2172/1121336.
Pełny tekst źródłaKueper, T. W. Sol-gel derived ceramic electrolyte films on porous substrates. Office of Scientific and Technical Information (OSTI), maj 1992. http://dx.doi.org/10.2172/5011926.
Pełny tekst źródłaSimspon, R., J. Satcher i A. Gash. Safe and Environmentally Acceptable Sol-gel Derived Pyrophoric Pyrotechnics. Office of Scientific and Technical Information (OSTI), czerwiec 2004. http://dx.doi.org/10.2172/15014310.
Pełny tekst źródłaKnobbe, Edward T. Sol-Gel Derived Surface Treatments for Aircraft Aluminum Alloys. Fort Belvoir, VA: Defense Technical Information Center, marzec 2002. http://dx.doi.org/10.21236/ada405721.
Pełny tekst źródłaKueper, Timothy Walter. Sol-gel derived ceramic electrolyte films on porous substrates. Office of Scientific and Technical Information (OSTI), maj 1992. http://dx.doi.org/10.2172/10159001.
Pełny tekst źródła