Gotowa bibliografia na temat „SOIL REINFORCED”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „SOIL REINFORCED”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "SOIL REINFORCED"
Liu, Wen Bai, i Zi Yi Chen. "Study of the Deformation Field of Reinforced Soil on the Triaxial Text". Applied Mechanics and Materials 71-78 (lipiec 2011): 5024–29. http://dx.doi.org/10.4028/www.scientific.net/amm.71-78.5024.
Pełny tekst źródłaUsmanov, Rustam, Ivan Mrdak, Nikolay Vatin i Vera Murgul. "Reinforced Soil Beds on Weak Soils". Applied Mechanics and Materials 633-634 (wrzesień 2014): 932–35. http://dx.doi.org/10.4028/www.scientific.net/amm.633-634.932.
Pełny tekst źródłaRAMIREZ, G. G. D., M. D. T. CASAGRANDE, D. FOLLE, A. PEREIRA i V. A. PAULON. "Behavior of granular rubber waste tire reinforced soil for application in geosynthetic reinforced soil wall". Revista IBRACON de Estruturas e Materiais 8, nr 4 (sierpień 2015): 567–76. http://dx.doi.org/10.1590/s1983-41952015000400009.
Pełny tekst źródłaHou, Yujie, Bo Wang, Liang Huang, Jianguo Xu, Dun Liu i Jiahua Zhu. "Microstructure and Macromechanical Properties of Retaining Structure of Near-Water Reinforced Soil under Dry-Wet Cycle". Mathematical Problems in Engineering 2021 (19.02.2021): 1–19. http://dx.doi.org/10.1155/2021/6691278.
Pełny tekst źródłaZhang, Jun, Wei Xu, Peiwei Gao, Lihai Su, Bai Kun, Li Yueyuan i Yang Bohan. "Integrity and crack resistance of hybrid polypropylene fiber reinforced cemented soil". Journal of Engineered Fibers and Fabrics 17 (styczeń 2022): 155892502110684. http://dx.doi.org/10.1177/15589250211068428.
Pełny tekst źródłaSong, Xiaoruan, Miansong Huang, Shiqin He, Gaofeng Song, Ruozhu Shen, Pengzhi Huang i Guanfang Zhang. "Erosion Control Treatment Using Geocell and Wheat Straw for Slope Protection". Advances in Civil Engineering 2021 (10.04.2021): 1–12. http://dx.doi.org/10.1155/2021/5553221.
Pełny tekst źródłaCicek, Elif, i Erol Guler. "BEARING CAPACITY OF STRIP FOOTING ON REINFORCED LAYERED GRANULAR SOILS". Journal of Civil Engineering and Management 21, nr 5 (6.05.2015): 605–14. http://dx.doi.org/10.3846/13923730.2014.890651.
Pełny tekst źródłaLi, Min, Shou Xi Chai, Hong Pu Du i Li Wei. "Statistics and Analysis of Influential Factors on Shear Strength of Reinforced Saline Soil with Wheat Straw and Lime". Advanced Materials Research 168-170 (grudzień 2010): 181–89. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.181.
Pełny tekst źródłaSingh, Preetpal. "Reinforced Soil Retaining Walls". International Journal for Research in Applied Science and Engineering Technology V, nr VIII (29.08.2017): 376–79. http://dx.doi.org/10.22214/ijraset.2017.8051.
Pełny tekst źródłaCrouse, Phillip E., i Jonathan T. H. Wu. "Geosynthetic-Reinforced Soil Walls". Transportation Research Record: Journal of the Transportation Research Board 1849, nr 1 (styczeń 2003): 53–58. http://dx.doi.org/10.3141/1849-07.
Pełny tekst źródłaRozprawy doktorskie na temat "SOIL REINFORCED"
Lee, Robin G. "Grid reinforced soil-foundations". Thesis, University of Nottingham, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375932.
Pełny tekst źródłaBalachandran, S. "Modelling of geosynthetic reinforced soil walls". Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.596295.
Pełny tekst źródłaVALLE, FERNANDO AUGUSTO FERREIRA DO. "PULLOUT TESTS IN TIRE REINFORCED SOIL". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2004. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=5907@1.
Pełny tekst źródłaA utilização de pneus usados é uma técnica interessante para reforço de solos, sob o aspecto ambiental. Os pneus usados constituem uma matéria-prima abundante e de custo reduzido. A técnica de utilização de pneus em obras geotécnicas vem sendo difundida no Brasil desde meados dos anos 90, com a construção do muro experimental de solopneus da PUC-Rio, em colaboração com a Fundação Geo-Rio e a Universidade de Ottawa (Canadá). O presente trabalho tem por objetivo apresentar a metodologia para avaliação da resistência ao arrancamento de malhas de pneus. Os pneus podem ser dispostos em um plano horizontal e amarrados entre si, formando uma malha de reforço. Podem ser utilizados pneus inteiros ou com uma das bandas laterais cortadas. A sobrecarga atuando no reforço provém do confinamento provocado pela altura do aterro de solo, construído sobre a malha de pneus. Os ensaios de arrancamento dos pneus no campo utilizaram uma estrutura metálica de reação, atirantada, a qual foi desenvolvida especificamente para o programa experimental sobre reforço de solos. Os resultados permitiram idealizar um mecanismo de ruptura envolvido no processo de arrancamento das malhas de pneus, bem como a verificação das características de resistência e deformabilidade deste tipo de reforço.
The use of scrap tires as soil reinforcement is an environmentally interesting technique. Scrap tires are an abundant and low cost waste material. The technique for using tires in geotechnical construction is becoming popular in Brazil since the construction of an experimental gravity wall made with soil and tires in 1995. This wall was part of a research project by carried out by PUC-Rio in collaboration with Geo-Rio and University of Ottawa. The objective of this work is to present a methodology to evaluate the pull-out behaviour of tire meshes. The tires can be placed in a horizontal plane and tied with rope or wire, forming a reinforcement mesh. The surcharge on these meshes comes from the confinement due to the height of a soil embankment built on the mesh. Field pull-out tests were performed on these reinforcement meshes, using a metallic reaction structure, which was developed specifically for this experimental research. The results allowed the idealization of a shearing mechanism based on the pull-out of tire meshes, as well as the verification of the strength and deformability characteristics of the reinforcement.
TEIXEIRA, CHRISTIANO FARIA. "ANALYSIS OF GEOGRID REINFORCED SOIL TESTS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2006. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9595@1.
Pełny tekst źródłaA utilização de materiais geossintéticos como reforço em obras geotécnicas vem crescendo bastante nas últimas décadas. A geogrelha, cuja função primária é o reforço de solos, é um entre os diversos tipos de geossintéticos, que vêm sendo utilizados. Diversas são as formas de interação da geogrelha com o solo em um maciço reforçado e o entendimento dos mecanismos que se desenvolvem nestas interações é essencial, pois só a partir daí pode-se obter parâmetros confiáveis para projeto. Pesquisas vêm sendo realizadas por diversos autores, mas muitos aspectos ainda devem ser estudados para que se tenha uma melhor compreensão do comportamento de solos reforçados com geogrelhas. A utilização de uma ferramenta numérica pode ser uma alternativa para que consigamos dar um passo adiante no entendimento da técnica de solo reforçado. Então, modelagens numéricas de ensaios triaxiais e de cisalhamento direto em solos reforçados e não reforçados foram realizadas com a utilização do programa Plaxis. Foram analisadas a influência do reforço no aumento da rigidez e resistência do solo e a resistência de interface solo-reforço. Para calibrar o programa e validar as análises numéricas, foram realizadas retro-análises dos ensaios realizados por Sieira (2003), onde se definiram aspectos importantes para modelar os ensaios, tal como, a melhor forma de impor as condições de contorno. Os resultados obtidos nas análises numéricas dos ensaios triaxiais sugerem que o programa Plaxis permite de forma razoável a reprodução dos ensaios reforçados, sendo possível prever o ganho de resistência do solo com a inclusão do reforço. Uma análise alternativa, onde se aplica um incremento de tensão confinante representativo da influência do reforço, foi também realizada. As análises numéricas dos ensaios de cisalhamento direto em solo arenoso não reforçado permitiram verificar a rotação do eixo das direções das tensões principais quando é aplicado carregamento cisalhante e a presença de uma zona central de cisalhamento (zona de cisalhamento). A resistência de interface sologeogrelha não foi bem reproduzida, indicando que o Plaxis não permite este tipo de avaliação. Quando os reforços encontravam-se inclinados, verificou-se a maior eficiência do reforço rígido e fazendo ângulo de 60º com a superfície de ruptura.
The use of geosynthetic materials as reinforcement in geotechnical engineering works is significantly increasing over the past decades. Geogrid, whose primary functions is reinforcing the soil mass, is one of the geosynthetics that has been used. In a reinforced soil structure, there are different types of interaction between soil and geogrid. To be possible to obtain reliable design parameters is essential to know the mobilized mechanisms in the interaction. This situation has been investigated by many researchers, but there are still many aspects to be better understood about geogrid reinforced soil behavior. In this research, numerical tools have been used to improve our knowledge about reinforced soil techniques. Numerical modeling of triaxial and direct shear tests on reinforced and non reinforced soils were carried out using software Plaxis. It was verified the resistance and stiffness increase of the soil due to geogrid inclusion and the interface soil-reinforcement resistance parameters. To calibrate the software and to validate the numerical analyses, back-analyses of the tests carried out by Sieira (2003) were done. These results helped to define important aspects to the tests modeling such as geometry and tests boundary conditions. The numerical analyses of the triaxial tests suggest that the software Plaxis reasonably allow an adequate reproduction of the reinforced soil tests. It was possible to foresee the increase of soil resistance because of reinforcement inclusion. In addition, an alternative analysis, where one applies a confining stress that reproduces the reinforcement influence, it was done. Numerical analyses of non reinforced direct shear tests had numerically evidenced the rotation of the axis of the principal stresses directions and the presence of a central zone of shear (shear zone). The soil- geogrid interface resistance was not well reproduced, indicating that Plaxis does not allow this type of evaluation. To inclined reinforcement relative to failure plane, it was verified the maximum gain of resistance is achieved with inclined reinforcement at 60º and when rigid geogrids are used.
Corbin, Andrew John. "Fibre-reinforced soil based construction materials". Thesis, Durham University, 2017. http://etheses.dur.ac.uk/12138/.
Pełny tekst źródłaReid, Richard Alan. "Conventional weapons effects on reinforced soil walls". Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/19578.
Pełny tekst źródłaChen, Cheng-Wei. "A constitutive model for fiber-reinforced soils". Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4768.
Pełny tekst źródłaThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Typescript. Vita. Title from title screen of research.pdf file (viewed on March 6, 2009) Includes bibliographical references.
Boyle, Stanley R. "Deformation prediction of geosynthetic reinforced soil retaining walls /". Thesis, Connect to this title online; UW restricted, 1995. http://hdl.handle.net/1773/10201.
Pełny tekst źródłaDortaj, Amal. "Permeability characteristics of fibre-reinforced Perth sandy soil". Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2019. https://ro.ecu.edu.au/theses/2175.
Pełny tekst źródłaRomero, Ricardo J. "Development of a constitutive model for fiber-reinforced soils /". free to MU campus, to others for purchase, 2003. http://wwwlib.umi.com/cr/mo/fullcit?p3115585.
Pełny tekst źródłaKsiążki na temat "SOIL REINFORCED"
Gabriele, Knödler, red. Reinforced soil. Stuttgart: IRB-Verlag, 1989.
Znajdź pełny tekst źródłaSawicki, Andrzej. Mechanics of reinforced soil. Rotterdam: Balkema, 2000.
Znajdź pełny tekst źródłaDall'acqua, Gianmarco Piermaria. Fibre reinforced stabilized soil. Birmingham: University of Birmingham, 1998.
Znajdź pełny tekst źródłaShukla, Sanjay Kumar, i Erol Guler, red. Advances in Reinforced Soil Structures. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63570-5.
Pełny tekst źródłaI, Ling Hoe, Leshchinsky Dov i Tatsuoka Fumio, red. Reinforced soil engineering: Advances in research and practice. New York: M. Dekker, 2003.
Znajdź pełny tekst źródłaSatyanarayana Reddy, C. N. V., Sireesh Saride i A. Murali Krishna, red. Ground Improvement and Reinforced Soil Structures. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-1831-4.
Pełny tekst źródłaShukla, Sanjay Kumar. Fundamentals of Fibre-Reinforced Soil Engineering. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3063-5.
Pełny tekst źródłaKetchart, Kanop. Performance test for geosynthetic-reinforced soil including effects of preloading. McLean, VA (6300 Georgetown Pike, McLean 22101-2296): U.S. Department of Transportation, Federal Highway Administration, Research, Development, and Technology, Turner-Fairbank Highway Research Center, 2001.
Znajdź pełny tekst źródłaNational Research Council (U.S.). Transportation Research Board., red. Reinforced layered systems. Washington, D.C: Transportation Research Board, National Research Council, 1987.
Znajdź pełny tekst źródłaNational Research Council (U.S.). Transportation Research Board., red. Behavior of jointed rock masses and reinforced soil structures, 1991. Washington, D.C: Transportation Research Board, National Research Council, 1991.
Znajdź pełny tekst źródłaCzęści książek na temat "SOIL REINFORCED"
Doulala-Rigby, Chaido. "Celebrating Reinforced Soil Structures". W Innovative Infrastructure Solutions using Geosynthetics, 121–50. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34242-5_11.
Pełny tekst źródłaShukla, Sanjay Kumar. "Applications of Fibre-Reinforced Soil". W Developments in Geotechnical Engineering, 145–80. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3063-5_5.
Pełny tekst źródłaShukla, Sanjay Kumar. "Basic Description of Fibre-Reinforced Soil". W Developments in Geotechnical Engineering, 23–44. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3063-5_2.
Pełny tekst źródłaShukla, Sanjay Kumar. "Engineering Behaviour of Fibre-Reinforced Soil". W Developments in Geotechnical Engineering, 45–110. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3063-5_3.
Pełny tekst źródłaJewell, R. A. "Reinforced Soil Wall Analysis and Behaviour". W The Application of Polymeric Reinforcement in Soil Retaining Structures, 365–408. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1405-6_15.
Pełny tekst źródłaChalaturnyk, R., D. H. K. Chan i J. D. Scott. "Finite Element Analysis of Reinforced Soil". W The Application of Polymeric Reinforcement in Soil Retaining Structures, 557–60. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1405-6_21.
Pełny tekst źródłaYan, Changgen, i Yinsen Tang. "Research Progress of Fiber Reinforced Soil". W Finding Solutions of the 21st Century Transportation Problems Through Research and Innovations, 102–15. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79638-9_9.
Pełny tekst źródłaVinayapriya, M. V., i Soumya Jose. "Performance of Geocell Reinforced Soil Beds". W Lecture Notes in Civil Engineering, 315–25. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6466-0_30.
Pełny tekst źródłaZornberg, J. G. "New horizons in reinforced soil technology". W New Horizons in Earth Reinforcement, 25–44. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003416753-3.
Pełny tekst źródłaJones, C. J. F. P., i S. P. Corbet. "Limit state design of reinforced soil". W New Horizons in Earth Reinforcement, 121–26. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003416753-12.
Pełny tekst źródłaStreszczenia konferencji na temat "SOIL REINFORCED"
Soliman, Sherif, i Adel Hanna. "Performance of Reinforced Collapsible Soil". W GeoFlorida 2010. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41095(365)32.
Pełny tekst źródłaLawson, C. R., i T. W. Yee. "Reinforced Soil Retaining Walls with Constrained Reinforced Fill Zones". W Geo-Frontiers Congress 2005. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40787(166)10.
Pełny tekst źródłaSahoo, S., B. Manna i K. G. Sharma. "Seismic Stability Analysis of Un-Reinforced and Reinforced Soil Slopes". W Fourth Geo-China International Conference. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784480007.009.
Pełny tekst źródłaProcházka, P., i J. Trckova. "Back analysis of reinforced soil slopes". W MATERIALS CHARACTERISATION 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/mc070421.
Pełny tekst źródłaKhosrojerdi, Mahsa, Tong Qiu, Ming Xiao i Jennifer Nicks. "Numerical Evaluation of Long-Term Performance of a Geosynthetic Reinforced Soil Pier and Reinforced Soil Foundation". W Geo-Congress 2020. Reston, VA: American Society of Civil Engineers, 2020. http://dx.doi.org/10.1061/9780784482797.047.
Pełny tekst źródłaSahu, Raghvendra, Ramanathan Ayothiraman i G. V. Ramana. "Dynamic Response of Model Footing on Reinforced Sand". W Geotechnical Earthquake Engineering and Soil Dynamics V. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784481486.021.
Pełny tekst źródłaLi, H., K. Senetakis i A. Khoshghalb. "Laboratory Study of Sands Reinforced with Polypropylene Fibers". W Geotechnical Earthquake Engineering and Soil Dynamics V. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784481486.032.
Pełny tekst źródłaWang, Lei, Michael Powers i Wenping Gong. "Reliability Analysis of Geosynthetic Reinforced Soil Walls". W Geo-Risk 2017. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480724.009.
Pełny tekst źródłaLatha, G. M., i A. M. Krishna. "Dynamic Response of Reinforced Soil Retaining Walls". W GeoShanghai International Conference 2006. Reston, VA: American Society of Civil Engineers, 2006. http://dx.doi.org/10.1061/40863(195)40.
Pełny tekst źródłaMichalowski, Radoslaw L. "Plasticity-Based Analysis of Reinforced Soil Structures". W Geo-Denver 2000. Reston, VA: American Society of Civil Engineers, 2000. http://dx.doi.org/10.1061/40515(291)23.
Pełny tekst źródłaRaporty organizacyjne na temat "SOIL REINFORCED"
Olen, Kara L., Richard J. Fragaszy, Michael R. Purcell i Kenneth W. Cargill. Dynamic Response of Reinforced Soil Systems. Phase 2. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1993. http://dx.doi.org/10.21236/ada288740.
Pełny tekst źródłaBernal, Andres, C. Lovell i Rodrigo Salgado. Laboratory Study on the Use of tire Shreds and Rubber-Sand in Backfilled and Reinforced Soil Applications. West Lafayette, IN: Purdue University, 1996. http://dx.doi.org/10.5703/1288284313259.
Pełny tekst źródłaEbeling, Robert, i Barry White. Load and resistance factors for earth retaining, reinforced concrete hydraulic structures based on a reliability index (β) derived from the Probability of Unsatisfactory Performance (PUP) : phase 2 study. Engineer Research and Development Center (U.S.), marzec 2021. http://dx.doi.org/10.21079/11681/39881.
Pełny tekst źródłaEbeling, Robert, Barry White, John Hite, James Tallent, Locke Williams, Brad McCoy, Aaron Hill, Cameron Dell, Jake Bruhl i Kevin McMullen. Load and resistance factors from reliability analysis Probability of Unsatisfactory Performance (PUP) of flood mitigation, batter pile-founded T-Walls given a target reliability index (𝛽). Engineer Research and Development Center (U.S.), lipiec 2023. http://dx.doi.org/10.21079/11681/47245.
Pełny tekst źródłaAgudelo Urrego, Luz María, Chatuphat Savigamin, Devansh Gandhi, Ghadir Haikal i Antonio Bobet. Assessment of Pipe Fill Heights. Purdue University Press, 2023. http://dx.doi.org/10.5703/1288284317612.
Pełny tekst źródłaGarcia, Lyan, James Rowland i Jeb Tingle. Evaluation of geocell-reinforced backfill for airfield pavement repair. Engineer Research and Development Center (U.S.), grudzień 2021. http://dx.doi.org/10.21079/11681/42550.
Pełny tekst źródła