Artykuły w czasopismach na temat „Soil-pile interaction in liquefiable”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Soil-pile interaction in liquefiable”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Klar, Assaf, Rafael Baker i Sam Frydman. "Seismic soil–pile interaction in liquefiable soil". Soil Dynamics and Earthquake Engineering 24, nr 8 (wrzesień 2004): 551–64. http://dx.doi.org/10.1016/j.soildyn.2003.10.006.
Pełny tekst źródłaGowda, G. M. Basavana, S. V. Dinesh, L. Govindaraju i R. Ramesh Babu. "Effect of Liquefaction Induced Lateral Spreading on Seismic Performance of Pile Foundations". Civil Engineering Journal 7 (12.03.2022): 58–70. http://dx.doi.org/10.28991/cej-sp2021-07-05.
Pełny tekst źródłaBoulanger, Ross W., Daniel W. Wilson, Bruce L. Kutter i Abbas Abghari. "Soil-Pile-Superstructure Interaction in Liquefiable Sand". Transportation Research Record: Journal of the Transportation Research Board 1569, nr 1 (styczeń 1997): 55–64. http://dx.doi.org/10.3141/1569-07.
Pełny tekst źródłaZhang, Xinlei, Zhanpeng Ji, Hongmei Gao, Zhihua Wang i Wenwen Li. "Pseudo-Static Simplified Analysis Method of the Pile-Liquefiable Soil Interaction considering Rate-Dependent Characteristics". Shock and Vibration 2022 (9.05.2022): 1–14. http://dx.doi.org/10.1155/2022/5915356.
Pełny tekst źródłaYang, Zhao Hui, Xiao Yu Zhang i Run Lin Yang. "Shake Table Modeling of Laterally Loaded Piles in Liquefiable Soils with a Frozen Crust". Applied Mechanics and Materials 204-208 (październik 2012): 654–58. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.654.
Pełny tekst źródłaLi, Pei Zhen, Da Ming Zeng, Sheng Long Cui i Xi Lin Lu. "Parameter Identification and Numerical Analysis of Shaking Table Tests on Liquefiable Soil-Structure-Interaction". Advanced Materials Research 163-167 (grudzień 2010): 4048–57. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.4048.
Pełny tekst źródłaZhang, Xinlei, Zhanpeng Ji, Jun Guo, Hongmei Gao i Zhihua Wang. "Seismic Pile–Soil Interaction Analysis Based on a Unified Thixotropic Fluid Model in Liquefiable Soil". Sustainability 15, nr 6 (17.03.2023): 5345. http://dx.doi.org/10.3390/su15065345.
Pełny tekst źródłaHaigh, Stuart K., i S. P. Gopal Madabhushi. "Centrifuge modelling of pile-soil interaction in liquefiable slopes". Geomechanics and Engineering 3, nr 1 (25.03.2011): 1–16. http://dx.doi.org/10.12989/gae.2011.3.1.001.
Pełny tekst źródłaChang, Dongdong, Ross Boulanger, Scott Brandenberg i Bruce Kutter. "FEM Analysis of Dynamic Soil-Pile-Structure Interaction in Liquefied and Laterally Spreading Ground". Earthquake Spectra 29, nr 3 (sierpień 2013): 733–55. http://dx.doi.org/10.1193/1.4000156.
Pełny tekst źródłaTian, Li Hui, Guo Feng Bai, Bin Feng, Li Yuan Wang i De Zhi Yang. "Scientific Problems on Seismic Resistance of Bridge of Pile Foundation in Liquefiable Site". Advanced Materials Research 594-597 (listopad 2012): 1707–12. http://dx.doi.org/10.4028/www.scientific.net/amr.594-597.1707.
Pełny tekst źródłaYu, Yiliang, Xiaohua Bao, Zhipeng Liu i Xiangsheng Chen. "Dynamic Response of a Four-Pile Group Foundation in Liquefiable Soil Considering Nonlinear Soil-Pile Interaction". Journal of Marine Science and Engineering 10, nr 8 (26.07.2022): 1026. http://dx.doi.org/10.3390/jmse10081026.
Pełny tekst źródłaBowen, Hayden J., i Misko Cubrinovski. "Effective stress analysis of piles in liquefiable soil". Bulletin of the New Zealand Society for Earthquake Engineering 41, nr 4 (31.12.2008): 247–62. http://dx.doi.org/10.5459/bnzsee.41.4.247-262.
Pełny tekst źródłaZhan-fang, Huang, Xiao-hong Bai, Chao Yin i Yong-qiang Liu. "Numerical analysis for the vertical bearing capacity of composite pile foundation system in liquefiable soil under sine wave vibration". PLOS ONE 16, nr 3 (17.03.2021): e0248502. http://dx.doi.org/10.1371/journal.pone.0248502.
Pełny tekst źródłaHung, Wen Yi, Chung Jung Lee, Wen Ya Chung, Chen Hui Tsai, Ting Chen, Chin Cheng Huang i Yuan Chieh Wu. "Centrifuge Modeling on Seismic Behavior of Pile in Liquefiable Soil Ground". Applied Mechanics and Materials 479-480 (grudzień 2013): 1139–43. http://dx.doi.org/10.4028/www.scientific.net/amm.479-480.1139.
Pełny tekst źródłaTang, Xiaowei, i T. Sato. "H-adaptivity applied to liquefiable soil in nonlinear analysis of soil–pile interaction". Soil Dynamics and Earthquake Engineering 25, nr 7-10 (sierpień 2005): 689–99. http://dx.doi.org/10.1016/j.soildyn.2004.11.014.
Pełny tekst źródłaWu, Yuan Chieh, i Che Wei Hu. "Seismic Analysis for Pile Foundations in the Liquefiable Soil Layer Using FLAC3D". Applied Mechanics and Materials 764-765 (maj 2015): 1114–18. http://dx.doi.org/10.4028/www.scientific.net/amm.764-765.1114.
Pełny tekst źródłaMaheshwari, B. K., i Rajib Sarkar. "Seismic Behavior of Soil-Pile-Structure Interaction in Liquefiable Soils: Parametric Study". International Journal of Geomechanics 11, nr 4 (sierpień 2011): 335–47. http://dx.doi.org/10.1061/(asce)gm.1943-5622.0000087.
Pełny tekst źródłaSarkar, Rajib, i B. K. Maheshwari. "Effects of Separation on the Behavior of Soil-Pile Interaction in Liquefiable Soils". International Journal of Geomechanics 12, nr 1 (luty 2012): 1–13. http://dx.doi.org/10.1061/(asce)gm.1943-5622.0000074.
Pełny tekst źródłaTang, Liang, Xianzhang Ling, Pengju Xu, Xia Gao i Dongsheng Wang. "Shake table test of soil-pile groups-bridge structure interaction in liquefiable ground". Earthquake Engineering and Engineering Vibration 9, nr 1 (marzec 2010): 39–50. http://dx.doi.org/10.1007/s11803-009-8131-7.
Pełny tekst źródłaXu, Chengshun, Hao Liu, Pengfei Dou, Jinting Wang, Su Chen i Xiuli Du. "Analysis on kinematic and inertial interaction in liquefiable soil-pile-structure dynamic system". Earthquake Engineering and Engineering Vibration 22, nr 3 (lipiec 2023): 601–12. http://dx.doi.org/10.1007/s11803-023-2190-z.
Pełny tekst źródłaYoo, Byeong-Soo, Nghiem Xuan Tran i Sung-Ryul Kim. "Numerical Simulation of Piles in a Liquefied Slope Using a Modified Soil–Pile Interface Model". Applied Sciences 13, nr 11 (30.05.2023): 6626. http://dx.doi.org/10.3390/app13116626.
Pełny tekst źródłaBao, Xiaohua, Shidong Wu, Zhipeng Liu, Dong Su i Xiangsheng Chen. "Study on the nonlinear behavior of soil–pile interaction in liquefiable soil using 3D numerical method". Ocean Engineering 258 (sierpień 2022): 111807. http://dx.doi.org/10.1016/j.oceaneng.2022.111807.
Pełny tekst źródłaSong, Jia, Xuelian Ma, Kemin Jia i Yu Yang. "An Explicit Finite Difference Method for Dynamic Interaction of Damped Saturated Soil Site-Pile Foundation-Superstructure System and Its Shaking Table Analysis". Buildings 12, nr 8 (8.08.2022): 1186. http://dx.doi.org/10.3390/buildings12081186.
Pełny tekst źródłaVarun, Dominic Assimaki i Abdollah Shafieezadeh. "Soil–pile–structure interaction simulations in liquefiable soils via dynamic macroelements: Formulation and validation". Soil Dynamics and Earthquake Engineering 47 (kwiecień 2013): 92–107. http://dx.doi.org/10.1016/j.soildyn.2012.03.008.
Pełny tekst źródłaLópez Jiménez, Guillermo A., Daniel Dias i Orianne Jenck. "Effect of the soil–pile–structure interaction in seismic analysis: case of liquefiable soils". Acta Geotechnica 14, nr 5 (7.11.2018): 1509–25. http://dx.doi.org/10.1007/s11440-018-0746-2.
Pełny tekst źródłaZhang, Xiao-ling, Li-jing Fang, Cheng-shun Xu, Ke-min Jia i Yan Han. "Influence analysis of overlying soil layer to seismic behavior of inclined liquefiable soil and pile interaction system". Soil Dynamics and Earthquake Engineering 169 (czerwiec 2023): 107876. http://dx.doi.org/10.1016/j.soildyn.2023.107876.
Pełny tekst źródłaTian, Li Hui, Guang Yi Sun, Xian Zhang Ling, Zi Yu Wang i Juan Wan. "Kinematic Soil-Structure Interaction Effect in Layered Liquefiable Soils on Foundation Input Motion". Applied Mechanics and Materials 353-356 (sierpień 2013): 240–46. http://dx.doi.org/10.4028/www.scientific.net/amm.353-356.240.
Pełny tekst źródłaShadlou, Masoud, i Subhamoy Bhattacharya. "A 1D-modelling approach for simulating the soil-pile interaction mechanism in the liquefiable ground". Soil Dynamics and Earthquake Engineering 158 (lipiec 2022): 107285. http://dx.doi.org/10.1016/j.soildyn.2022.107285.
Pełny tekst źródłaTang, Liang, Baydaa Hussain Maula, Xianzhang Ling i Lei Su. "Numerical simulations of shake-table experiment for dynamic soil-pile-structure interaction in liquefiable soils". Earthquake Engineering and Engineering Vibration 13, nr 1 (marzec 2014): 171–80. http://dx.doi.org/10.1007/s11803-014-0221-5.
Pełny tekst źródłaZakariya, A., A. Rifa’i, S. Ismanti i M. S. Hidayat. "Axial and lateral bearing capacity assessment of bored piles on medium-dense sand and liquefiable potential based on numerical simulation". IOP Conference Series: Earth and Environmental Science 1184, nr 1 (1.05.2023): 012007. http://dx.doi.org/10.1088/1755-1315/1184/1/012007.
Pełny tekst źródłaLi, Peizhen, Jinping Yang i Zheng Lu. "Shaking table test and theoretical analysis of the pile-soil-structure interaction at a liquefiable site". Structural Design of Tall and Special Buildings 27, nr 15 (25.06.2018): e1513. http://dx.doi.org/10.1002/tal.1513.
Pełny tekst źródłaSu, Lei, Hua-Ping Wan, Shaghayegh Abtahi, Yong Li i Xian-Zhang Ling. "Dynamic response of soil–pile–structure system subjected to lateral spreading: shaking table test and parallel finite element simulation". Canadian Geotechnical Journal 57, nr 4 (kwiecień 2020): 497–517. http://dx.doi.org/10.1139/cgj-2018-0485.
Pełny tekst źródłaAlzabeebee, Saif, i Davide Forcellini. "Numerical Simulations of the Seismic Response of a RC Structure Resting on Liquefiable Soil". Buildings 11, nr 9 (25.08.2021): 379. http://dx.doi.org/10.3390/buildings11090379.
Pełny tekst źródła., Tan Manh Do, Anh Ngoc Do i Hung Trong Vo. "Numerical analysis of the tunnel uplift behavior subjected to seismic loading". Journal of Mining and Earth Sciences 63, nr 3a (31.07.2022): 1–9. http://dx.doi.org/10.46326/jmes.2022.63(3a).01.
Pełny tekst źródłaOlarte, J., B. Paramasivam, S. Dashti, A. Liel i J. Zannin. "Centrifuge modeling of mitigation-soil-foundation-structure interaction on liquefiable ground". Soil Dynamics and Earthquake Engineering 97 (czerwiec 2017): 304–23. http://dx.doi.org/10.1016/j.soildyn.2017.03.014.
Pełny tekst źródłaJafarian, Y., B. Mehrzad, C. J. Lee i A. H. Haddad. "Centrifuge modeling of seismic foundation-soil-foundation interaction on liquefiable sand". Soil Dynamics and Earthquake Engineering 97 (czerwiec 2017): 184–204. http://dx.doi.org/10.1016/j.soildyn.2017.03.019.
Pełny tekst źródłaForcellini, Davide. "Soil-structure interaction analyses of shallow-founded structures on a potential-liquefiable soil deposit". Soil Dynamics and Earthquake Engineering 133 (czerwiec 2020): 106108. http://dx.doi.org/10.1016/j.soildyn.2020.106108.
Pełny tekst źródłaKarimi, Zana, i Shideh Dashti. "Numerical and Centrifuge Modeling of Seismic Soil–Foundation–Structure Interaction on Liquefiable Ground". Journal of Geotechnical and Geoenvironmental Engineering 142, nr 1 (styczeń 2016): 04015061. http://dx.doi.org/10.1061/(asce)gt.1943-5606.0001346.
Pełny tekst źródłaSong, Jia, Yu Yang, Kemin Jia, Pengfei Dou, Xuelian Ma i Haohao Shen. "Seismic response and instability analysis of the liquefiable soil-piles-superstructure interaction system". Structures 54 (sierpień 2023): 134–52. http://dx.doi.org/10.1016/j.istruc.2023.05.048.
Pełny tekst źródłaMoshirabadi, Saeed, Masoud Soltani i Koichi Maekawa. "Seismic interaction of underground RC ducts and neighboring bridge piers in liquefiable soil foundation". Acta Geotechnica 10, nr 6 (29.05.2015): 761–80. http://dx.doi.org/10.1007/s11440-015-0392-x.
Pełny tekst źródłaKirkwood, Peter, i Shideh Dashti. "A Centrifuge Study of Seismic Structure-Soil-Structure Interaction on Liquefiable Ground and Implications for Design in Dense Urban Areas". Earthquake Spectra 34, nr 3 (sierpień 2018): 1113–34. http://dx.doi.org/10.1193/052417eqs095m.
Pełny tekst źródłaAbu Taiyab, Md, Md Jahangir Alam i Md Zoynul Abedin. "Dynamic Soil-Structure Interaction of a Gravity Quay Wall and the Effect of Densification in Liquefiable Sites". International Journal of Geomechanics 14, nr 1 (luty 2014): 20–33. http://dx.doi.org/10.1061/(asce)gm.1943-5622.0000278.
Pełny tekst źródłaGüllü, Hamza. "Discussion on “Soil-structure interaction analyses of shallow-founded structures on a potential-liquefiable soil deposit” [Soil Dynam Earthq Eng 133 (2020) 106108]". Soil Dynamics and Earthquake Engineering 139 (grudzień 2020): 106379. http://dx.doi.org/10.1016/j.soildyn.2020.106379.
Pełny tekst źródłaMeng, Fan Chao, Xiao Ming Yuan i Hui Xue. "Primary Study on Mechanism of Earthquake-Induced Differential Settlement of Buildings on Liquefiable Subsoil". Advanced Materials Research 594-597 (listopad 2012): 352–57. http://dx.doi.org/10.4028/www.scientific.net/amr.594-597.352.
Pełny tekst źródłaGibson, Matthew. "Observations on the Seismic Loading of Rigid Inclusions based on 3D Numerical Simulations". DFI Journal The Journal of the Deep Foundations Institute 16, nr 3 (23.12.2022): 1–22. http://dx.doi.org/10.37308/dfijnl.20220513.256.
Pełny tekst źródłaFasano, Gianluca, Valeria Nappa, Ali Güney Özcebe i Emilio Bilotta. "Numerical modelling of the effect of horizontal drains in centrifuge tests on soil-structure interaction in liquefiable soils". Bulletin of Earthquake Engineering 19, nr 10 (3.04.2021): 3895–931. http://dx.doi.org/10.1007/s10518-021-01084-2.
Pełny tekst źródłaYao, Aijun, Tian Tian, Yifei Gong i Hui Li. "Shaking Table Tests of Seismic Response of Multi-Segment Utility Tunnels in a Layered Liquefiable Site". Sustainability 15, nr 7 (30.03.2023): 6030. http://dx.doi.org/10.3390/su15076030.
Pełny tekst źródłaKarimi, Zana, i Shideh Dashti. "Ground Motion Intensity Measures to Evaluate II: The Performance of Shallow-Founded Structures on Liquefiable Ground". Earthquake Spectra 33, nr 1 (luty 2017): 277–98. http://dx.doi.org/10.1193/103015eqs163m.
Pełny tekst źródłaForcellini, Davide. "Reply to the discussion on “Soil-structure interaction analyses of shallow-founded structures on a potential-liquefiable soil deposit” [Soil Dynamics and Earthquake Engineering 133 (2020) 106108]". Soil Dynamics and Earthquake Engineering 139 (grudzień 2020): 106380. http://dx.doi.org/10.1016/j.soildyn.2020.106380.
Pełny tekst źródłaYao, Jiantao, i Yongliang Lin. "Influence Analysis of Liquefiable Interlayer on Seismic Response of Underground Station Structure". Applied Sciences 13, nr 16 (14.08.2023): 9210. http://dx.doi.org/10.3390/app13169210.
Pełny tekst źródła