Gotowa bibliografia na temat „Soil-pile interaction in liquefiable”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Soil-pile interaction in liquefiable”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Soil-pile interaction in liquefiable"
Klar, Assaf, Rafael Baker i Sam Frydman. "Seismic soil–pile interaction in liquefiable soil". Soil Dynamics and Earthquake Engineering 24, nr 8 (wrzesień 2004): 551–64. http://dx.doi.org/10.1016/j.soildyn.2003.10.006.
Pełny tekst źródłaGowda, G. M. Basavana, S. V. Dinesh, L. Govindaraju i R. Ramesh Babu. "Effect of Liquefaction Induced Lateral Spreading on Seismic Performance of Pile Foundations". Civil Engineering Journal 7 (12.03.2022): 58–70. http://dx.doi.org/10.28991/cej-sp2021-07-05.
Pełny tekst źródłaBoulanger, Ross W., Daniel W. Wilson, Bruce L. Kutter i Abbas Abghari. "Soil-Pile-Superstructure Interaction in Liquefiable Sand". Transportation Research Record: Journal of the Transportation Research Board 1569, nr 1 (styczeń 1997): 55–64. http://dx.doi.org/10.3141/1569-07.
Pełny tekst źródłaZhang, Xinlei, Zhanpeng Ji, Hongmei Gao, Zhihua Wang i Wenwen Li. "Pseudo-Static Simplified Analysis Method of the Pile-Liquefiable Soil Interaction considering Rate-Dependent Characteristics". Shock and Vibration 2022 (9.05.2022): 1–14. http://dx.doi.org/10.1155/2022/5915356.
Pełny tekst źródłaYang, Zhao Hui, Xiao Yu Zhang i Run Lin Yang. "Shake Table Modeling of Laterally Loaded Piles in Liquefiable Soils with a Frozen Crust". Applied Mechanics and Materials 204-208 (październik 2012): 654–58. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.654.
Pełny tekst źródłaLi, Pei Zhen, Da Ming Zeng, Sheng Long Cui i Xi Lin Lu. "Parameter Identification and Numerical Analysis of Shaking Table Tests on Liquefiable Soil-Structure-Interaction". Advanced Materials Research 163-167 (grudzień 2010): 4048–57. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.4048.
Pełny tekst źródłaZhang, Xinlei, Zhanpeng Ji, Jun Guo, Hongmei Gao i Zhihua Wang. "Seismic Pile–Soil Interaction Analysis Based on a Unified Thixotropic Fluid Model in Liquefiable Soil". Sustainability 15, nr 6 (17.03.2023): 5345. http://dx.doi.org/10.3390/su15065345.
Pełny tekst źródłaHaigh, Stuart K., i S. P. Gopal Madabhushi. "Centrifuge modelling of pile-soil interaction in liquefiable slopes". Geomechanics and Engineering 3, nr 1 (25.03.2011): 1–16. http://dx.doi.org/10.12989/gae.2011.3.1.001.
Pełny tekst źródłaChang, Dongdong, Ross Boulanger, Scott Brandenberg i Bruce Kutter. "FEM Analysis of Dynamic Soil-Pile-Structure Interaction in Liquefied and Laterally Spreading Ground". Earthquake Spectra 29, nr 3 (sierpień 2013): 733–55. http://dx.doi.org/10.1193/1.4000156.
Pełny tekst źródłaTian, Li Hui, Guo Feng Bai, Bin Feng, Li Yuan Wang i De Zhi Yang. "Scientific Problems on Seismic Resistance of Bridge of Pile Foundation in Liquefiable Site". Advanced Materials Research 594-597 (listopad 2012): 1707–12. http://dx.doi.org/10.4028/www.scientific.net/amr.594-597.1707.
Pełny tekst źródłaRozprawy doktorskie na temat "Soil-pile interaction in liquefiable"
Dash, Suresh R. "Lateral pile soil interaction in liquefiable soils". Thesis, University of Oxford, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.543468.
Pełny tekst źródłaTang, Xiaowei. "Nonlinear Numerical Methods to Analyze Ground Flow and Soil-Pile Interaction in Liquefiable Soil". 京都大学 (Kyoto University), 2004. http://hdl.handle.net/2433/134545.
Pełny tekst źródłaVarun. "A non-linear dynamic macroelement for soil structure interaction analyses of piles in liquefiable sites". Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34718.
Pełny tekst źródłaChian, Siau Chen. "Floatation of underground structures in liquefiable soils". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610082.
Pełny tekst źródłaChaudhry, Anjum Rashid. "Static pile-soil-pile interaction in offshore pile groups". Thesis, University of Oxford, 1994. http://ora.ox.ac.uk/objects/uuid:7b4c8d56-184f-4c8d-98c9-2d9c69a1ef55.
Pełny tekst źródłaTaherzadeh, Reza. "Seismic soil-pile group-structure interaction". Châtenay-Malabry, Ecole centrale de Paris, 2008. http://www.theses.fr/2008ECAP1096.
Pełny tekst źródłaDespite the significant progress in simple engineering design of surface footing with considering the soil-structure interaction (SSI), there is still a need of the same procedure for the pile group foundation. The main approach to solve this strongly coupled problem is the use of full numerical models, taking into account the soil and the piles with equal rigor. This is however a computationally very demanding approach, in particular for large numbers of piles. The originality of this thesis is using an advanced numerical method with coupling the existing software MISS3D based on boundary element (BE), green's function for the stratified infinite visco-elastic soil and the matlab toolbox SDT based on finite element (FE) method to modeling the foundation and the superstructure. After the validation of this numerical approach with the other numerical results published in the literature, the leading parameters affecting the impedance and the kinematic interaction have been identified. Simple formulations have then been derived for the dynamic stiffness matrices of pile groups foundation subjected to horizontal and rocking dynamic loads for both floating piles in homogeneous half-space and end-bearing piles. These formulations were found using a large data base of impedance matrix computed by numerical FE-BE model. These simple approaches have been validated in a practical case. A modified spectral response is then proposed with considering the soil-structure interaction effect
Dewsbury, Jonathan J. "Numerical modelling of soil-pile-structure interaction". Thesis, University of Southampton, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.582152.
Pełny tekst źródłaPeiris, Thanuja Pubudini. "Soil-pile interaction of pile embedded in deep layered marine sediment under seismic excitation". Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/75518/1/Thanuja%20Pubudini_Peiris_Thesis.pdf.
Pełny tekst źródłaTOMBARI, ALESSANDRO. "Seismic response of extended pile shafts considering nonlinear soil-pile interaction". Doctoral thesis, Università Politecnica delle Marche, 2013. http://hdl.handle.net/11566/242686.
Pełny tekst źródłaSingle column bents on extended pile shafts are widely used in bridges for their economical and technical advantages. Nevertheless, this system is strongly affected by Dynamic Soil- Pile-Structure Interaction. In addition to the lengthening of the fundamental period of the structure, the compliance of the foundation induces a rocking component of the seismic motion experienced by the overall system that cannot be considered by following the procedures of a common seismic design practice. Although advanced models have been developed in order to account for Soil-Pile-Structure Interaction both in the linear and nonlinear range, Winkler-type models represent one of the most feasible approaches. In this work, a Beam on Nonlinear Winkler Foundation model is used to investigate the importance of features typical in soil nonlinear behaviour such as yielding, gapping, soil cave-in and cyclic hardening/degradation effects on the performance of extended pile shafts. A procedure to estimate the model parameters from geotechnical soil characterization is presented. Incremental Dynamic Analyses are performed to evaluate the effects of Ground Motion Duration and soil nonlinearity on the performance of extended pile shafts in various homogeneous and two-layered soil profiles, including saturated clay and sand in either fully dry or saturated state with different levels of compaction. A procedure to perform Incremental Dynamic Analysis, including effects on both site response analysis and on the structural performance, is established. Nonlinear kinematic and inertial interaction effects are analyzed by means of an exhaustive parametric investigation. The significant effects of the rocking component and the Ground Motion Duration on the seismic response of extended pile shafts are demonstrated. Comparisons with results obtained with a linear model are also presented. Finally, some considerations are drawn pointing out grey areas of the common design practice.
Fernandez, Carlos Javier. "Pile-structure interaction in GTSTRUDL". Thesis, Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/21418.
Pełny tekst źródłaKsiążki na temat "Soil-pile interaction in liquefiable"
Jonathan, Knappett, i Haigh Stuart, red. Design of pile foundations in liquefiable soils. London: Imperial College Press, 2010.
Znajdź pełny tekst źródłaPedro, Arduino, University of Washington. Dept. of Civil Engineering., Washington State Transportation Center, Washington (State). Dept. of Transportation., United States. Federal Highway Administration. i Washington State Transportation Commission, red. Dynamic stiffness of piles in liquefiable soils. Seattle, Wash: The Center, 2002.
Znajdź pełny tekst źródłaLee, Lin. Soil-pile interaction of bored and cast in-situ piles. Birmingham: University of Birmingham, 2001.
Znajdź pełny tekst źródłaF, Van Impe W., red. Single piles and pile groups under lateral loading. Rotterdam: Balkema, 2001.
Znajdź pełny tekst źródłaW, Boulanger Ross, Tokimatsu Kohji, University of California, Berkeley. Earthquake Engineering Research Center., American Society of Civil Engineers. Geo-Institute. i Tōkyō Kōgyō Daigaku. Toshi Jishin Kōgaku Sentā., red. Seismic performance and simulation of pile foundations in liquefield and laterally spreading ground: Proceedings of a workshop, March 16-18, 2005, University of California, Davis, California. Reston, VA: American Society of Civil Engineers, 2005.
Znajdź pełny tekst źródłaModak, Sukomal. Determination of rheological parameters of pile foundations for bridges for earthquake analysis. [Olympia]: Washington State Dept. of Transportation, 1997.
Znajdź pełny tekst źródłaCofer, William F. Determination of rheological parameters of pile foundations for bridges for earthquake analysis. [Olympia]: Washington State Dept. of Transportation, 1997.
Znajdź pełny tekst źródłaWoods, Richard D. Dynamic effects of pile installations on adjacent structures. Washington, D.C: National Academy Press, 1997.
Znajdź pełny tekst źródłaShamsher, Prakash, American Society of Civil Engineers. Committee on Geotechnical Earthquake Engineering. i ASCE National Convention (1997 : Minneapolis, Minn.), red. Seismic analysis and design for soil-pile-structure interactions: Proceedings of a session sponsored by the Committee on Geotechnical Earthquake Engineering of the Geo-Institute of the American Society of Civil Engineers in conjunction with the ASCE National Convention in Minneapolis, Minnesota, October 5-8, 1997. Reston, VA: The Society, 1997.
Znajdź pełny tekst źródłaReese, L. C., i William F. van Impe. Single piles and pile groups under lateral loading (HBK). Taylor & Francis, 2000.
Znajdź pełny tekst źródłaCzęści książek na temat "Soil-pile interaction in liquefiable"
Alver, Ozan, i E. Ece Eseller-Bayat. "The Effect of Soil Damping on the Soil-Pile-Structure Interaction Analyses in Liquefiable and Non-liquefiable Soils". W Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022), 1059–66. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11898-2_83.
Pełny tekst źródłaQi, Shengwenjun, i Jonathan Adam Knappett. "Remediation of Structure-Soil-Structure Interaction on Liquefiable Soil Using Densification". W Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022), 1193–200. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11898-2_99.
Pełny tekst źródłaMiranda, G., V. Nappa, E. Bilotta, S. K. Haigh i S. P. G. Madabhushi. "Centrifuge tests on tunnel-building interaction in liquefiable soil". W Geotechnical Aspects of Underground Construction in Soft Ground. 2nd Edition, 613–19. Wyd. 2. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003355595-80.
Pełny tekst źródłaAzadi, Mohammad, i Lindsey Sebastian Bryson. "Effect of Width Variation of Liquefiable Sand Lens on Surface Settlement Due to Shallow Tunneling". W Dynamic Soil-Structure Interaction for Sustainable Infrastructures, 155–63. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01920-4_13.
Pełny tekst źródłaFansuri, Muhammad Hamzah, Muhsiung Chang i Rini Kusumawardani. "A Case Study on Buckling Stability of Piles in Liquefiable Ground for a Coal-Fired Power Station in Indonesia". W Innovative Solutions for Soil Structure Interaction, 88–106. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34252-4_8.
Pełny tekst źródłaMiranda, G., V. Nappa i E. Bilotta. "Preliminary Numerical Simulation of Centrifuge Tests on Tunnel-Building Interaction in Liquefiable Soil". W Lecture Notes in Civil Engineering, 583–91. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21359-6_62.
Pełny tekst źródłaKhodakarami, Mohammad Iman, Marzieh Dehghan i Denise-Penelope N. Kontoni. "Modeling of Soil-Structure Interaction in Liquefiable Soils Using an Equivalent Linear Approach Including Shear Modulus Updating". W Lecture Notes in Civil Engineering, 389–406. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4055-2_31.
Pełny tekst źródłaArulmoli, Arul K. "Preliminary Seismic Deformation and Soil-Structure Interaction Evaluations of a Caisson-Supported Marine Terminal Wharf Retaining and Founded on Liquefiable Soils". W Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading, 631–33. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22818-7_32.
Pełny tekst źródłaRehman, Musabur, i S. M. Abbas. "Seismic Analysis of Pile Foundation Passing Through Liquefiable Soil". W Lecture Notes in Civil Engineering, 539–53. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2545-2_45.
Pełny tekst źródłaNovak, M. "Pile-Soil-Pile Interaction under Small and Large Displacements". W Developments in Dynamic Soil-Structure Interaction, 361–80. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1755-5_16.
Pełny tekst źródłaStreszczenia konferencji na temat "Soil-pile interaction in liquefiable"
Ghasemi, Golara, Amin Barari i Asskar Janalizadeh Choobbasti. "Seismic Analysis of Pile-Soil Interaction in Liquefiable Soils via Gap Elements". W Geo-Shanghai 2014. Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413425.033.
Pełny tekst źródłaShafieezadeh, A., B. D. Kosbab, R. DesRoches i R. T. Leon. "Dynamic Interaction Behavior of Pile-Supported Wharves and Container Cranes in Liquefiable Soil Embankments". W Structures Congress 2012. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412367.049.
Pełny tekst źródłaTang, Liang, Xianzhang Ling, Pengju Xu, Xia Gao i Liquan Wu. "Case Studies for Shaking Table Tests on Seismic Soil-Pile Group-Bridge Structure Interaction in Liquefiable Ground". W Ninth International Conference of Chinese Transportation Professionals (ICCTP). Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41064(358)131.
Pełny tekst źródłaChaloulos, Yannis, Yannis Tsiapas, George Bouckovalas i Konstantinos Bazaios. "COUPLED ANALYSIS OF SEISMIC PILE-TENDON-PLATFORM INTERACTION IN LIQUEFIABLE SEABED". W 8th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering. Athens: Institute of Structural Analysis and Antiseismic Research National Technical University of Athens, 2021. http://dx.doi.org/10.7712/120121.8843.18540.
Pełny tekst źródłaLing, X. Z., X. Gao, L. Tang i L. Su. "Effect of Shaking Intensity on Interactive Behavior of Soil-Pile Group Foundations in Liquefiable Soil during Shaking Table Tests". W Sixth China-Japan-US Trilateral Symposium on Lifeline Earthquake Engineering. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784413234.079.
Pełny tekst źródłaTajirian, Frederick F., Mansour Tabatabaie i Pramod Rao. "Soil-Structure Interaction Analysis of a Large Diameter Tank on Piled Foundations in Liquefiable Soil". W Eighth International Conference on Case Histories in Geotechnical Engineering. Reston, VA: American Society of Civil Engineers, 2019. http://dx.doi.org/10.1061/9780784482100.018.
Pełny tekst źródłaRayamajhi, Deepak, Dario Rosidi, Michele McHenry i Nathan M. Wallace. "Assessment of Soil-Structure-Fluid Interaction of a Digester Tank Complex in Liquefiable Soils under Earthquake Loadings". W Geotechnical Earthquake Engineering and Soil Dynamics V. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784481479.006.
Pełny tekst źródłaTang, Xiaowei, Ying Jie i Maotian Luan. "A Coupled Finite Element-Element Free Galerkin Method for Liquefiable Soil-Structure Interaction Analysis Under Earthquake Loading". W ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-80174.
Pełny tekst źródłaHwang, Y., i J. Wang. "How the Shear Wave Velocity Uncertainty Affects Soil-Structure Interaction on Liquefiable Soils?" W 5th Asia Pacific Meeting on Near Surface Geoscience & Engineering. European Association of Geoscientists & Engineers, 2023. http://dx.doi.org/10.3997/2214-4609.202378075.
Pełny tekst źródłaLi, Peizhen, Peng Zhao, Xilin Lu i Shenglong Cui. "Comparative Study on Dynamic Soil-Structure Interaction System with Nonliquefiable and Liquefiable Soil by Using Shaking Table Model Test". W 7th International Conference on Tall Buildings. Singapore: Research Publishing Services, 2009. http://dx.doi.org/10.3850/9789628014194_0023.
Pełny tekst źródłaRaporty organizacyjne na temat "Soil-pile interaction in liquefiable"
Han, Fei, Jeehee Lim, Rodrigo Salgado, Monica Prezzi i Mir Zaheer. Load and Resistance Factor Design of Bridge Foundations Accounting for Pile Group–Soil Interaction. Purdue University, listopad 2016. http://dx.doi.org/10.5703/1288284316009.
Pełny tekst źródłaWang, Yao, Jeehee Lim, Rodrigo Salgado, Monica Prezzi i Jeremy Hunter. Pile Stability Analysis in Soft or Loose Soils: Guidance on Foundation Design Assumptions with Respect to Loose or Soft Soil Effects on Pile Lateral Capacity and Stability. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317387.
Pełny tekst źródłaEbeling, Robert, Barry White, John Hite, James Tallent, Locke Williams, Brad McCoy, Aaron Hill, Cameron Dell, Jake Bruhl i Kevin McMullen. Load and resistance factors from reliability analysis Probability of Unsatisfactory Performance (PUP) of flood mitigation, batter pile-founded T-Walls given a target reliability index (𝛽). Engineer Research and Development Center (U.S.), lipiec 2023. http://dx.doi.org/10.21079/11681/47245.
Pełny tekst źródłaSECOND-ORDER DIRECT ANALYSIS FOR STEEL H-PILES ACCOUNTING FOR POST-DRIVING RESIDUAL STRESSES. The Hong Kong Institute of Steel Construction, sierpień 2022. http://dx.doi.org/10.18057/icass2020.p.349.
Pełny tekst źródła