Artykuły w czasopismach na temat „Soil physics”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Soil physics.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Soil physics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Kodešová, R. "Miroslav Kutílek – Professor of soil science, soil physics and soil hydrology". Soil and Water Research 3, Special Issue No. 1 (30.06.2008): S5—S6. http://dx.doi.org/10.17221/1412-swr.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Horton, R. "Soil Physics". Journal of Environmental Quality 21, nr 4 (październik 1992): 740. http://dx.doi.org/10.2134/jeq1992.00472425002100040034x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Rose, D. A. "Soil physics". Physics of the Earth and Planetary Interiors 61, nr 3-4 (styczeń 1990): 325–26. http://dx.doi.org/10.1016/0031-9201(90)90117-g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Raats, P. A. C. "Soil physics". Soil and Tillage Research 31, nr 2-3 (sierpień 1994): 283–85. http://dx.doi.org/10.1016/0167-1987(94)90087-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Buchan, G. D. "Soil Physics Companion." Vadose Zone Journal 3, nr 2 (1.05.2004): 727. http://dx.doi.org/10.2113/3.2.727.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Prettyman, Guy. "Environmental Soil Physics". Journal of Environmental Quality 28, nr 6 (listopad 1999): 2031–32. http://dx.doi.org/10.2134/jeq1999.00472425002800060046x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Buchan, Graeme D. "Soil Physics Companion." Vadose Zone Journal 3, nr 2 (maj 2004): 727. http://dx.doi.org/10.2136/vzj2004.0727.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Fritton, Daniel D. "Environmental Soil Physics". Eos, Transactions American Geophysical Union 80, nr 25 (1999): 284. http://dx.doi.org/10.1029/99eo00206.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Lal, Rattan. "Environmental Soil Physics". Soil Science 165, nr 5 (maj 2000): 453–54. http://dx.doi.org/10.1097/00010694-200005000-00011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Hopmans, Jan W. "Soil Physics Companion". Soil Science 167, nr 12 (grudzień 2002): 838–39. http://dx.doi.org/10.1097/00010694-200212000-00008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Zhang, R. "Soil Physics Companion". Journal of Environmental Quality 31, nr 6 (listopad 2002): 2125. http://dx.doi.org/10.2134/jeq2002.2125dup.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Sposito, Garrison. "The “physics” of soil water physics". Water Resources Research 22, nr 9S (sierpień 1986): 83S—88S. http://dx.doi.org/10.1029/wr022i09sp0083s.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Dragila, Maria Inés. "Principles of Soil Physics." Vadose Zone Journal 4, nr 2 (maj 2005): 448. http://dx.doi.org/10.2136/vzj2004.0012br.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Koorevaar, P., G. Menelik i C. Dirksen. "Elements of Soil Physics". Soil Science 140, nr 4 (październik 1985): 305. http://dx.doi.org/10.1097/00010694-198510000-00012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

HILLEL, DANIEL. "RESEARCH IN SOIL PHYSICS". Soil Science 151, nr 1 (styczeń 1991): 30–34. http://dx.doi.org/10.1097/00010694-199101000-00006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

SELIM, H. M. "Scaling in Soil Physics". Soil Science 152, nr 4 (październik 1991): 313. http://dx.doi.org/10.1097/00010694-199110000-00014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Murty, V. V. N. "Soil physics and rice". Agricultural Water Management 12, nr 3 (kwiecień 1987): 254–55. http://dx.doi.org/10.1016/0378-3774(87)90020-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Raats, Peter A. C., i Martinus Th van Genuchten. "MILESTONES IN SOIL PHYSICS". Soil Science 171, Suppl. 1 (czerwiec 2006): S21—S28. http://dx.doi.org/10.1097/01.ss.0000228048.85215.bf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Mullins, C. "Soil physics. 2nd edn." Endeavour 13, nr 2 (styczeń 1989): 97. http://dx.doi.org/10.1016/0160-9327(89)90032-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Youngs, E. G. "Soil physics and hydrology". Journal of Hydrology 100, nr 1-3 (lipiec 1988): 411–31. http://dx.doi.org/10.1016/0022-1694(88)90194-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Hoogmoed, Willem B. "Soil physics and rice". Soil and Tillage Research 9, nr 4 (lipiec 1987): 396–98. http://dx.doi.org/10.1016/0167-1987(87)90065-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Dexter, A. R., i I. M. Young. "Soil physics towards 2000". Soil and Tillage Research 24, nr 2 (lipiec 1992): 101–6. http://dx.doi.org/10.1016/0167-1987(92)90095-s.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Gorban, V. A. "Ecological soil physics as section of ecological soil science". Ecology and Noospherology 26, nr 3-4 (7.09.2015): 96–105. http://dx.doi.org/10.15421/031523.

Pełny tekst źródła
Streszczenie:
Nowadays, there is a general penetration of ecology in other related sciences. Soil science is not an exception. To the evidence of this, the works of soil scientists may serve, that have appeared recently. It is shown that the ecology of soil is a broader area of the genetic soil science, than ecological soil science. In addition to the doctrine of the ecological functions of soil, modern soil ecology also includes the factor ecology and the doctrine of biosphere soil conservation. In modern soil science there are 2 main areas – fundamental, which aims to study all the features of soil as a natural body, and applied that examines various aspects of soil use by man. At the same time it should be noted that most of soil scientists until recently isolated a genetic soil science in two main areas – the genesis and the geography of soils. Academician L. I. Prasolov (1978) was the first who proposed to allocate soil ecology in a separate section of soil science, along with the above directions. V. R. Volobuev (1963) hold on to the similar views. I. A. Sokolov (1993) showed that the section «Soil ecology» is equal to such sections of soil science as the «Genesis of the soil» and «Geography of the soil». N. A. Gorin (2005) hold on to the similar point of view. On this basis, we offer the following vision of the place of soil ecology in the structure of modern soil science. This scheme is based on the allocation of basic research in the areas of soil science by the team of authors under the leadership of the Moscow State University V. A. Kovda and B. G. Rozanov (Pochvovedenie, 1988). The classification of the historic area of soil science is identified with the genesis of soil by us, and pedography – with the geography of soil. The scientific achievements of other fundamental areas (pedognostika, dynamic soil science, regional soil science, history and methodology of science) are widely used to address key issues of historical soil science and pedography. The structure of the direction «Ecology of soil» is developed by academician G. V. Dobrovolsky and E. D. Nikitin (2012). This doctrine of the ecological functions of soil, classification by B. F. Aparin (2012) is a fundamental direction, the theoretical basis of ecological soil science, related to the applied directions. After L. O. Karpachevsky (2005), who considers the ecological functions of soil subject as ecological soil science, we identify the ecological soil science with the doctrine of the ecological functions of soil in some extent. This view is confirmed by the definition of ecological soil science, formulated G. V. Dobrovolsky and G. S. Kust (2012) – «This is a direction in modern soil science, studied the role of soil as a unique habitat of plants, animals, microorganisms, and especially – in human life, in the functioning of the biosphere and the individual ecosystems». From the above definition, it is clear that in this case, the authors believe that the core of ecological soil science is ecological functions of soil, which manifest themselves through their specific role in nature and human life. The subject of the study of ecological soil science, as indicated by L. O. Karpachevsky (2005), is the ecological functions of soil. Modern physics of soil – is the area of soil science that studies the physical properties of the soil and the place in which physical processes are flowing (Voronin, 1986). As you can see from the definition, the ecological functions of soil caused by the physical properties of soil, remain outside the field of soil physics research. For this reason, there is a need for the provision and the development of ecological soil physics, which is based on theoretical and practical achievements of classical physics of soil, and will also pay close attention to research the ecological functions of soil.
Style APA, Harvard, Vancouver, ISO itp.
24

Allbrook, RF. "Shrinkage of some New Zealand soils and its implications for soil physics". Soil Research 31, nr 2 (1993): 111. http://dx.doi.org/10.1071/sr9930111.

Pełny tekst źródła
Streszczenie:
Aggregates from three New Zealand soils were used to produce shrinkage curves. Each soil had a clay mineralogy dominated by a different mineral, namely allophane, halloysite and kaolinite.The curves showed marked differences. Only the allophanic soil showed structural shrinkage, and only the halloysitic soil showed residual shrinkage. When the slope of the normal shrinkage line is about unity, this indicates the soil is liable to crack- this was only shown by the allophanic soil. The implication for soil physics is that, since all soils with at least a moderate clay content shrink, bulk densities change with moisture and this must be allowed for in such calculations as soil moisture on a volume basis.
Style APA, Harvard, Vancouver, ISO itp.
25

Groenevelt, Pieter H. "Applied soil physics — Soil water and temperature applications". Soil and Tillage Research 32, nr 1 (październik 1994): 87. http://dx.doi.org/10.1016/0167-1987(94)90035-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Hunt, A. G., R. P. Ewing i R. Horton. "What's Wrong with Soil Physics?" Soil Science Society of America Journal 77, nr 6 (20.09.2013): 1877–87. http://dx.doi.org/10.2136/sssaj2013.01.0020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Ruud, Nels. "Introduction to Environmental Soil Physics". Vadose Zone Journal 5, nr 3 (sierpień 2006): 912. http://dx.doi.org/10.2136/vzj2006.0013br.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Campbell, G. S. "Soil Physics with Basic. 1986". Soil Science 142, nr 6 (grudzień 1986): 367–68. http://dx.doi.org/10.1097/00010694-198612000-00007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

GERMANN, PETER. "Soil Physics, Fifth Edition. 1991". Soil Science 153, nr 5 (maj 1992): 417–19. http://dx.doi.org/10.1097/00010694-199205000-00010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Rogowski, A. S. "Scaling Methods in Soil Physics". Journal of Environmental Quality 33, nr 1 (styczeń 2004): 410–11. http://dx.doi.org/10.2134/jeq2004.410a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

何, 海龙. "Bilingual Teaching of Soil Physics". Creative Education Studies 08, nr 05 (2020): 797–803. http://dx.doi.org/10.12677/ces.2020.85130.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Lahlou, Sabah, Rachid Mrabet i Mohamed Ouadia. "Soil physics: a Moroccan perspective". Journal of African Earth Sciences 39, nr 3-5 (czerwiec 2004): 441–45. http://dx.doi.org/10.1016/j.jafrearsci.2004.07.021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Nofziger, David L., i Jinquan Wu. "Soil Physics Teaching Tools: Steady-State Water Movement in Soils". Journal of Natural Resources and Life Sciences Education 29, nr 1 (2000): 130–34. http://dx.doi.org/10.2134/jnrlse.2000.0130.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Protasenya, О. N., L. V. Larchenkov i M. L. Protasenya. "DEFORMATION MECHANISM OF STRUCTURAL BODY COMPRESSION". Science & Technique 17, nr 1 (9.02.2018): 29–41. http://dx.doi.org/10.21122/2227-1031-2018-17-1-29-41.

Pełny tekst źródła
Streszczenie:
In order to prepare soil for sowing of agricultural crops it is necessary to have a number of engineering structures that ensure its qualitative treatment and protection from erosion. Modern equipment do not fully meet the whole complex of specified requirements. Application of tillage machinery being used for main soil cultivation is directed on suppression (destruction) of natural vegetation which is considered as the strongest competitor to cultivated plants. From the other side, vegetation on the Earth’s surface plays an important role for reliable protection of soil from erosion. Destruction of vegetation throughout the whole period of crop tending leads to the fact that the remaining cultivated plants are not able to protect soil from erosion by such natural aggressive factors as rain storms and strong winds. As a consequence, processes of soil structure destruction and losses of entire soil strata and its fertility occur in the geographical (landscape) envelope. Thus, equipment for primary and secondary soil tillage exerts double impact: from one side, killing of weeds takes place, and on the other hand, there is destruction (erosion) of soil structure and profiles of its geographical envelope. The soil, in the understanding of the earth, is the perfect place that gives life to plants and organisms, has a fertility. For the last 50 years analytical scope of physical processes occurring in the soil has been extended, physical methods for investigation of soil properties and application of technical equipment for assessment of physical-mechanical soil characteristics have got widespread use. However, there is no summative investigation on soil physics which includes and reveals thermodynamics, electrophysics and nuclear physics of soils. At the same time an integrated approach for studying such complicated object makes it possible to understand important nature of some processes occurring in the soil and to develop practical measures for fertility improvement and erosion reduction. The paper considers problems pertaining to deformation mechanism while forming soil structure and its compression under influence of external loadings: magnetic, electric, physico-chemical, gravitational and thermal fields and working organs of tillage tools.
Style APA, Harvard, Vancouver, ISO itp.
35

Robinson, David. "Soil Physics with BASIC. Tranport Models for Soil-Plant Systems". Geoderma 39, nr 1 (listopad 1986): 80–82. http://dx.doi.org/10.1016/0016-7061(86)90066-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Bristow, Keith L. "Soil physics with BASIC—transport models for soil plant systems". Agricultural and Forest Meteorology 41, nr 3-4 (grudzień 1987): 341–42. http://dx.doi.org/10.1016/0168-1923(87)90091-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Cassel, D. K. "Soil physics with BASIC. Transport models for soil-plant systems". Journal of Hydrology 90, nr 3-4 (kwiecień 1987): 359–60. http://dx.doi.org/10.1016/0022-1694(87)90077-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Gliński, Jan, Józef Horabik i Jerzy Lipiec. "Agrophysics - physics in agriculture and environment". Soil Science Annual 64, nr 2 (1.08.2013): 67–80. http://dx.doi.org/10.2478/ssa-2013-0012.

Pełny tekst źródła
Streszczenie:
Abstract Agrophysics is one of the branches of natural sciences dealing with the application of physics in agriculture and environment. It plays an important role in the limitation of hazards to agricultural objects (soils, plants, agricultural products and foods) and to the environment. Soil physical degradation, gas production in soils and emission to the atmosphere, physical properties of plant materials influencing their technological and nutritional values and crop losses are examples of such hazards. Agrophysical knowledge can be helpful in evaluating and improving the quality of soils and agricultural products as well as the technological processes.
Style APA, Harvard, Vancouver, ISO itp.
39

Nielsen, D. R., M. Kutilek, O. Wendroth i J. W. Hopmans. "Selected research opportunities in soil physics". Scientia Agricola 54, spe (czerwiec 1997): 51–77. http://dx.doi.org/10.1590/s0103-90161997000300010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Hershey, David R. "Container-Soil Physics and Plant Growth". BioScience 40, nr 9 (październik 1990): 685. http://dx.doi.org/10.2307/1311437.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Sparkes, Matthew. "Soil physics helps ants dig tunnels". New Scientist 251, nr 3349 (sierpień 2021): 7. http://dx.doi.org/10.1016/s0262-4079(21)01483-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Scott, H. Don. "Book Review: Soil Physics and Rice." Outlook on Agriculture 15, nr 4 (grudzień 1986): 225. http://dx.doi.org/10.1177/003072708601500412.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Lal, R. "Soil Physics: Agricultural and Environmental Applications". Soil Science 166, nr 10 (październik 2001): 717–18. http://dx.doi.org/10.1097/00010694-200110000-00007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Reichardt, Klaus. "Aspects of soil physics in Brazil". Soil Technology 1, nr 1 (marzec 1988): 93–94. http://dx.doi.org/10.1016/s0933-3630(88)80009-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Smith, Roger. "Book Review: Soil physics, third edition". Progress in Physical Geography: Earth and Environment 22, nr 3 (wrzesień 1998): 417–18. http://dx.doi.org/10.1177/030913339802200312.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Keen, B. A. "Soil physics in relation to meteorology". Quarterly Journal of the Royal Meteorological Society 58, nr 245 (10.09.2007): 229–50. http://dx.doi.org/10.1002/qj.49705824504.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Youngs, E. G. "Environmental Physics". European Journal of Soil Science 51, nr 3 (wrzesień 2000): 541–49. http://dx.doi.org/10.1046/j.1365-2389.2000.00334-7.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Richards, BG. "The role of lateral stresses on soil water relations in swelling clays". Soil Research 24, nr 4 (1986): 457. http://dx.doi.org/10.1071/sr9860457.

Pełny tekst źródła
Streszczenie:
The moisture characteristic of a swelling soil is the result of complex interaction between the soil water potential and imposed mechanical stresses. This can give rise to soil water profiles which cannot be interpreted by soil water theories for non-swelling soils. Agricultural soil physics has been concerned primarily with highly structured surface soils, and has developed simple theories for the effects of stress on soil water relations in swelling soils. These simple theories ignore the effect of lateral stress in the soil. Civil engineers, on the other hand, dealing mainly with less complex soils at depth, have developed more complex theories for the effect of three-dimensional stress states on soil water relations. This paper shows how the effect of three-dimensional stress can and should be included in soil water studies of swelling soils, and gives examples to demonstrate the possible magnitude of such effects.
Style APA, Harvard, Vancouver, ISO itp.
49

Pachepsky, Ya, K. Rajkai i B. Tóth. "Pedotransfer in soil physics: trends and outlook — A review —". Agrokémia és talajtan 64, nr 2 (grudzień 2015): 339–60. http://dx.doi.org/10.1556/0088.2015.64.2.3.

Pełny tekst źródła
Streszczenie:
Parameters governing the retention and movement of water and chemicals in soils are notorious for the difficulties and high labor costs involved in measuring them. Often, there is a need to resort to estimating these parameters from other, more readily available data, using pedotransfer relationships. This work is a mini-review that focuses on trends in pedotransfer development across the World, and considers trends regarding data that are in demand, data we have, and methods to build pedotransfer relationships. Recent hot topics are addressed, including estimating the spatial variability of water contents and soil hydraulic properties, which is needed in sensitivity analysis, evaluation of the model performance, multimodel simulations, data assimilation from soil sensor networks and upscaling using Monte Carlo simulations. Ensembles of pedotransfer functions and temporal stability derived from “big data” as a source of soil parameter variability are also described. Estimating parameter correlation is advocated as the pathway to the improvement of synthetic datasets. Upscaling of pedotransfer relationships is demonstrated for saturated hydraulic conductivity. Pedotransfer at coarse scales requires a different type of input variables as compared with fine scales. Accuracy, reliability, and utility have to be estimated independently. Persistent knowledge gaps in pedotransfer development are outlined, which are related to regional soil degradation, seasonal changes in pedotransfer inputs and outputs, spatial correlations in soil hydraulic properties, and overland flow parameter estimation. Pedotransfer research is an integral part of addressing grand challenges of the twenty-first century, including carbon stock assessments and forecasts, climate change and related hydrological weather extreme event predictions, and deciphering and managing ecosystem services. Overall, pedotransfer functions currently serve as an essential instrument in the science-based toolbox for diagnostics, monitoring, predictions, and management of the changing Earth and soil as a life-supporting Earth system.
Style APA, Harvard, Vancouver, ISO itp.
50

Musa, Mohamed S., Yu Lu i John S. McCartney. "Improved Thermal Conductivity Function for Unsaturated Soil with Physics-based Parameters". E3S Web of Conferences 382 (2023): 06005. http://dx.doi.org/10.1051/e3sconf/202338206005.

Pełny tekst źródła
Streszczenie:
This paper proposes a new relationship between thermal conductivity and degree of saturation of unsaturated soils, referred to as the thermal conductivity function (TCF). The new sigmoidal relationship between thermal conductivity and degree of saturation was developed so that all parameters have a physical meaning. After calibration of the model using data from the literature and comparison with other available TCFs, the parameters of the new TCF were related to those of the soil-water retention curves for the soils investigated in the calibration process. The linkage between the parameters of the TCF and SWRC indicates that the parameters reflect the point of air entry and pore size distribution of the soil, as well as the maximum and minimum thermal conductivity values encountered at saturated and dry conditions, respectively.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii