Gotowa bibliografia na temat „Soil Inorganic Carbon”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Soil Inorganic Carbon”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Soil Inorganic Carbon"
Walia, Maninder K., i Warren A. Dick. "Gypsum and carbon amendments influence carbon fractions in two soils in Ohio, USA". PLOS ONE 18, nr 4 (4.04.2023): e0283722. http://dx.doi.org/10.1371/journal.pone.0283722.
Pełny tekst źródłaNaorem, Anandkumar, Somasundaram Jayaraman, Ram C. Dalal, Ashok Patra, Cherukumalli Srinivasa Rao i Rattan Lal. "Soil Inorganic Carbon as a Potential Sink in Carbon Storage in Dryland Soils—A Review". Agriculture 12, nr 8 (18.08.2022): 1256. http://dx.doi.org/10.3390/agriculture12081256.
Pełny tekst źródłaKnowles, T. A., i B. Singh. "Carbon storage in cotton soils of northern New South Wales". Soil Research 41, nr 5 (2003): 889. http://dx.doi.org/10.1071/sr02023.
Pełny tekst źródłaBaldock, J. A., B. Hawke, J. Sanderman i L. M. Macdonald. "Predicting contents of carbon and its component fractions in Australian soils from diffuse reflectance mid-infrared spectra". Soil Research 51, nr 8 (2013): 577. http://dx.doi.org/10.1071/sr13077.
Pełny tekst źródłaJAIN, N. K., H. N. MEENA, R. S. YADAV i R. S. JAT. "Biomass production, carbon sequestration potential and productivity of different peanut (Arachis hypogaea)-based cropping systems and their effect on soil carbon dynamics". Indian Journal of Agricultural Sciences 88, nr 7 (19.07.2018): 1044–53. http://dx.doi.org/10.56093/ijas.v88i7.81548.
Pełny tekst źródłaLing, Ling, Yan Jiao, Wenzhu Yang i Yan Wang. "Research Progress and Trend Analysis of Soil Inorganic Carbon Sink Based on Citespace". E3S Web of Conferences 406 (2023): 04022. http://dx.doi.org/10.1051/e3sconf/202340604022.
Pełny tekst źródłaUrmi, Tahmina Akter, Md Mizanur Rahman, Md Moshiul Islam, Md Ariful Islam, Nilufar Akhtar Jahan, Md Abdul Baset Mia, Sohela Akhter, Manzer H. Siddiqui i Hazem M. Kalaji. "Integrated Nutrient Management for Rice Yield, Soil Fertility, and Carbon Sequestration". Plants 11, nr 1 (5.01.2022): 138. http://dx.doi.org/10.3390/plants11010138.
Pełny tekst źródłaAsanopoulos, Christina H., Jeff A. Baldock, Lynne M. Macdonald i Timothy R. Cavagnaro. "Quantifying blue carbon and nitrogen stocks in surface soils of temperate coastal wetlands". Soil Research 59, nr 6 (2021): 619. http://dx.doi.org/10.1071/sr20040.
Pełny tekst źródłaXiong, Yufei. "Soil Inorganic Carbon Research Progress in China". Landscape and Urban Horticulture 1, nr 1 (2018): 24–28. http://dx.doi.org/10.23977/lsuh.2018.11004.
Pełny tekst źródłaMI, NA, SHAOQIANG WANG, JIYUAN LIU, GUIRUI YU, WENJUAN ZHANG i ESTEBAN JOBBÁGY. "Soil inorganic carbon storage pattern in China". Global Change Biology 14, nr 10 (27.05.2008): 2380–87. http://dx.doi.org/10.1111/j.1365-2486.2008.01642.x.
Pełny tekst źródłaRozprawy doktorskie na temat "Soil Inorganic Carbon"
Burgos, Hernández Tania D. "Investigating Soil Quality and Carbon Balance for Ohio State University Soils". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1577141132704637.
Pełny tekst źródłaHolmes, Brett. "Mobilization of Metals and Phosphorous from Intact Forest Soil Cores by Dissolved Inorganic Carbon: A Laboratory Column Study". Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/HolmesB2007.pdf.
Pełny tekst źródłaKiser, Larry Christopher. "Thirty-year Changes in Mineral Soil C in a Cumberland Plateau Forest as Influenced by Inorganic-N, Soil Texture, and Topography". Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/35725.
Pełny tekst źródłaMaster of Science
Waiser, Travis Heath. "In situ characterization of soil properties using visible near-infrared diffuse reflectance spectroscopy". Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/5915.
Pełny tekst źródłaVan, der Ham Ilana. "The effect of inorganic fertilizer application on compost and crop litter decomposition dynamics in sandy soil". Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/97109.
Pełny tekst źródłaENGLISH ABSTRACT: Inorganic fertilizer applications are common practice in commercial agriculture, yet not much is known regarding their interaction with organic matter and soil biota. Much research has been done on the effect of inorganic N on forest litter decomposition, yet very little research has focused on the effect of inorganic fertilizers on crop litters and, to our knowledge, none on composted organic matter. Furthermore none of the research has been done in South Africa. The main aim of this research project was to determine the effect of inorganic fertilizer applications on the decomposition of selected organic matter sources commonly used in South African agriculture and forestry. Two decomposition studies were conducted over a 3-month period, one on composts and the other on plant litters, using a local, sandy soil. In the first experiment a lower quality compost, compost A (C:N ratio, 17.67), and higher quality compost, compost B (C:N ratio, 4.92) was treated with three commercially used fertilizer treatments. Two were typical blends used for vegetable (tomato and cabbage) production: tomato fertilizer (10:2:15) (100 kg N, 20 kg P, 150 kg K per ha) and cabbage fertilizer (5:2:4) (250 kg N, 100 kg P, 200 kg K per ha). The third fertilizer blend, an equivalent mass application of N and P applied at 150 kg of each element per ha, is more commonly used in pastures. In the second experiment, five commonly encountered crop and forestry litters, namely kikuyu grass, lucerne residues, pine needles, sugar cane trash and wheat straw, were selected to represent the labile organic matter sources. The litters were treated with the tomato and cabbage fertilizer applications rates. Both decomposition experiments were conducted under ambient laboratory conditions at field water capacity. Decomposition rates were monitored by determining CO2 emissions, DOC production, β-glucosidase and polyphenol oxidase activity (PPO). At the start and end of decomposition study, loss on ignition was performed to assess the total loss of OM. Based on the results obtained from these two experiments, it was concluded that the addition of high N containing inorganic fertilizers enhanced the decomposition of both composted and labile organic matter. For both compost and plant litters, DOC production was greatly enhanced with the addition of inorganic fertilizers regardless of the organic matter quality. The conclusion can be made that inherent N in organic matter played a role in the response of decomposition to inorganic fertilizer application with organic matter low in inherent N showing greater responses in decomposition changes. For labile organic matter polyphenol and cellulose content also played a role in the responses observed from inorganic fertilizer applications.
AFRIKAANSE OPSOMMING: Anorganiese kunsmis toedieningss is algemene praktyk in die kommersiële landbou sektor,maar nog min is bekend oor hul interaksie met organiese materiaal en grond biota. Baie navorsing is reeds oor die uitwerking van anorganiese N op woud en plantasiereste se ontbinding gedoen. Baie min navorsing het gefokus op die uitwerking van anorganiese kunsmis op die gewasreste en tot ons kennis, is daar geen navorsing gedoen op die invloed van anorganiese kunsmis op gekomposteer organiese material nie. Verder is geeneen van die navorsing studies is in Suid-Afrika gedoen nie. Die hoofdoel van hierdie navorsingsprojek was om die effek van anorganiese kunsmis toedienings op die ontbinding van geselekteerde organiese materiaal bronne, wat algemeen gebruik word in die Suid-Afrikaanse landbou en bosbou, te bepaal. Twee ontbinding studies is gedoen oor 'n 3-maande-tydperk, een op kompos en die ander op die plantreste, met die gebruik van 'n plaaslike, sanderige grond. In die eerste eksperiment is ‘n laer gehalte kompos, kompos A (C: N verhouding, 17.67), en 'n hoër gehalte kompos, kompos B (C: N verhouding, 4.92) met drie kommersieel anorganiese bemesting behandelings behandel. Twee was tipiese versnitte gebruik vir die groente (tamatie en kool) produksie: tamatie kunsmis (10: 2:15) (100 kg N, 20 kg P, 150 kg K per ha) en kool kunsmis (5: 2: 4) (250 kg N, 100 kg P, 200 kg K per ha). Die derde kunsmis versnit was 'n ekwivalente massa toepassing van N en P van 150 kg van elke element per ha, wat meer algemeen gebruik word in weiding. In die tweede eksperiment was vyf algemeen gewas en bosbou reste, naamlik kikoejoegras, lusern reste, dennenaalde, suikerriet reste en koring strooi, gekies om die labiele organiese materiaal bronne te verteenwoordig. Die reste is met die tamatie en kool kunsmis toedienings behandel. Beide ontbinding eksperimente is uitgevoer onder normale laboratorium toestande by veldwaterkapasiteit. Ontbinding tempo is deur die bepaling van die CO2-vrystellings, opgelosde organiese koolstof (OOK) produksie, β-glukosidase en polifenol oksidase aktiwiteit (PPO) gemonitor. Aan die begin en einde van ontbinding studie, is verlies op ontbranding uitgevoer om die totale verlies van OM te evalueer. Gebaseer op die resultate van hierdie twee eksperimente, was die gevolgtrekking dat die toevoeging van hoë N bevattende anorganiese bemestingstowwe die ontbinding van beide komposte en plant reste verhoog. Vir beide kompos en plantreste word OOK produksie verhoog met die toevoeging van anorganiese bemesting, ongeag van die organiese materiaal gehalte. Die gevolgtrekking kan gemaak word dat die inherente N in organiese materiaal 'n rol gespeel het in die reaksie van ontbinding op anorganiese bemesting toedienings met die grootste reaksie in organiese material laag in inherente N. Vir labiele organiese material het polifenol en sellulose inhoud ook 'n rol gespeel in die reaksie waargeneeming op anorganiese bemesting.
Vuong, Truong Xuan Verfasser], Gerhard [Akademischer Betreuer] [Gerold, Hermann [Akademischer Betreuer] Jungkunst, Volker [Akademischer Betreuer] Thiel, Hilmar von [Akademischer Betreuer] Eynatten, Heitkamp Dr [Akademischer Betreuer] Felix i Reimer Dr [Akademischer Betreuer] Andreas. "Highly resolved thermal analysis as a tool for simultaneous quantification of total carbon, organic carbon, inorganic carbon and soil organic carbon fractions in landscapes / Truong Xuan Vuong. Gutachter: Gerhard Gerold ; Hermann Jungkunst ; Volker Thiel ; Hilmar Von Eynatten ; Heitkamp Dr Felix ; Reimer Dr Andreas. Betreuer: Gerhard Gerold". Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2015. http://d-nb.info/106762662X/34.
Pełny tekst źródłaBrigham, Russell D. "Assessing the Effects of Lake Dredged Sediments on Soil Health: Agricultural and Environmental Implications on Midwest Ohio". Bowling Green State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1593902126203743.
Pełny tekst źródłaCondron, Leo M. "Chemical nature and plant availability of phosphorus present in soils under long-term fertilised irrigated pastures in Canterbury, New Zealand". Lincoln College, University of Canterbury, 1986. http://hdl.handle.net/10182/1875.
Pełny tekst źródłaWang, Dunling. "Storage of organic and inorganic carbon of biogenic origin in the soils of the parkland-prairie ecosystem". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq23889.pdf.
Pełny tekst źródłaNeto, Marcos Siqueira. "\"Estoque de carbono e nitrogênio do solo com diferentes usos no Cerrado em Rio Verde (GO)\"". Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/64/64132/tde-11042007-113740/.
Pełny tekst źródłaThe land-use change transforms the elements cycles in the soil, with alterations in the greenhouse gas (GHG) emissions. The time of implementation of the no-tillage system associated with a cover crop (NT) can recover the carbon (C) stocks in the soil and thus mitigate the global temperature increase due increasing GHG concentration. Therefore, the objective of this work was to evaluate the alterations of the soil carbon and nitrogen stocks following implementation time of no-tillage (NT) system taking as absolute reference the original condition (Cerradão) and, also, as relative reference, areas with other land use change, one under pasture, and other under conventional tillage. The study was done in areas located at Rio Verde (Goias state, Brazil) (17°50\' to 18°20\' S and 51°43\' to 50°19\' W), in a Oxisol (very clayed Red Dystrofic typic Latosol) with clay contents in the range 50 - 70 %. At each site, samples were taken randomly with subdivided parcels; these sites were divided in three sub-areas with six sampling locations and five depths (0-5, 5-10, 10-20, 20-30, 30-40 cm.). The sampled sites were three under ?Cerradão? (CE, 2CE and 3CE); one pasture (PA), one conventional tillage (CT), and seven situations under no-tillage system with an area recently converted from conventional tillage to no-tillage (NT 0), and areas with 4, 5, 7, 8, 10 and 12 years of implementation of the no-tillage (NT-4, NT-5, NT-7, NT-8, NT-10 and NT- 12). The variables studied were: physical and chemical attributes, the C and N stocks and the isotopic composition of 13C/12C and 15N/14N. The GHG emissions (CO2, N2O and CH4) were measured in CE, PA, CT and NT with 8, 10, and 12 years together with the quantity of inorganic-N and microbial C and N. The results of this study showed that these no-tillage systems guaranteed the physical attribute improvement with the decrease of the soil compaction and in the chemical attributes with increase of pH and of the availability of K, P, Ca and magnesium in the soil superficial layers. The carbon and nitrogen stocks were higher in ?Cerradão? (80 and 4 Mg ha-1, respectively to C and N). The lowest values in the carbon stocks were reported in NT-0, CT and PA (54; 62 and 64 Mg ha-1, respectively). The implementation time of no-tillage (NT) system increased the carbon stock in the soil, leading to carbon stock in the NT-12 area in the same level of the ?Cerradão? areas. The annual soil C accumulation in the NT system was calculated in 1,26 Mg ha-1 yr?1 (0-30 cm). For all areas, the average quantities of C and microbial-N and inorganic-N were found in CE, nitrate-N corresponded 60 % of the total. The highest total emission in C-equivalent was observed in PA (160 kg ha-1 yr-1), in CE it was 135 kg ha-1 yr-1, and amounted 121 and 129 135 kg ha-1 yr-1 for the CT and NT respectively. The carbon sequestration in the soil under (NT) for the studied situations was 1,13 Mg ha-1 yr-1. The No-tillage (NT) system studied showed to be an agricultural practice that improves the soil condition, promoting the increase of carbon stock without the increase of N2O and CH4 emissions, being thus an alternative to diminish the GHG emissions, and guaranteeing the sustainability of the productive system
Książki na temat "Soil Inorganic Carbon"
Monitoring of inorganic contaminants associated with irrigation drainage in Stillwater National Wildlife Refuge and Carson Lake, west-central Nevada, 1994-96. Carson City, NV: U.S. Dept. of the Interior, U.S. Geological Survey, 2000.
Znajdź pełny tekst źródłaKirchman, David L. Microbial growth, biomass production, and controls. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0008.
Pełny tekst źródłaCzęści książek na temat "Soil Inorganic Carbon"
Monger, H. Curtis. "Soils as Generators and Sinks of Inorganic Carbon in Geologic Time". W Soil Carbon, 27–36. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_3.
Pełny tekst źródłaLorenz, Klaus, i Rattan Lal. "Soil Inorganic Carbon Stocks in Terrestrial Biomes". W Soil Organic Carbon Sequestration in Terrestrial Biomes of the United States, 147–73. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95193-1_4.
Pełny tekst źródłaMikhailova, Elena, Christopher Post, Larry Cihacek i Michael Ulmer. "Soil inorganic carbon sequestration as a result of cultivation in the mollisols". W Carbon Sequestration and Its Role in the Global Carbon Cycle, 129–33. Washington, D. C.: American Geophysical Union, 2009. http://dx.doi.org/10.1029/2005gm000313.
Pełny tekst źródłaMilanolo, Simone. "From Soil to Cave: The Inorganic Carbon in Drip Water". W Sources and Transport of Inorganic Carbon in the Unsaturated Zone of Karst, 107–24. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29308-0_8.
Pełny tekst źródłaPal, D. K. "Is Soil Inorganic Carbon (CaCO3, SIC) Sequestration a Bane or a Hidden Treasure in Soil Ecosystem Services?" W Ecosystem Services and Tropical Soils of India, 53–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22711-1_4.
Pełny tekst źródłaPilli, Kiran, Bishnuprasad Dash, Biswabara Sahu, Jaison M i Durgam Sridhar. "Soil Inorganic Carbon in Dry Lands: An Unsung Player in Climate Change Mitigation". W Enhancing Resilience of Dryland Agriculture Under Changing Climate, 247–57. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9159-2_14.
Pełny tekst źródłaWang, Jiaping, Xiujun Wang i Juan Zhang. "Land Use Impacts on Soil Organic and Inorganic Carbon and Their Isotopes in the Yanqi Basin". W Springer Earth System Sciences, 69–88. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7022-8_6.
Pełny tekst źródłaKuria, Peter, Josiah Gitari, Saidi Mkomwa i Peter Waweru. "Effect of conservation agriculture on soil properties and maize grain yield in the semi-arid Laikipia county, Kenya." W Conservation agriculture in Africa: climate smart agricultural development, 256–69. Wallingford: CABI, 2022. http://dx.doi.org/10.1079/9781789245745.0015.
Pełny tekst źródłaDonald, L. Suarez. "Carbon: Soil Inorganic". W Managing Global Resources and Universal Processes, 185–93. CRC Press, 2020. http://dx.doi.org/10.1201/9780429346132-20.
Pełny tekst źródłaNordt, Lee. "Inorganic Carbon". W Encyclopedia of Soil Science, Second Edition. CRC Press, 2005. http://dx.doi.org/10.1201/noe0849338304.ch181.
Pełny tekst źródłaStreszczenia konferencji na temat "Soil Inorganic Carbon"
Ghahremani, Zahra, Jennifer Pierce, David Huber, Linda Reynard, Erin Murray i Caitlyn Swanson. "THE IMPORTANCE OF DUST IN THE FORMATION OF SOIL INORGANIC CARBON IN DRYLANDS". W Joint 118th Annual Cordilleran/72nd Annual Rocky Mountain Section Meeting - 2022. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022cd-374097.
Pełny tekst źródłaYang, Haiqing, Weiqiang Luo, Ning Xu i Abdul M. Mouazen. "Prediction of organic and inorganic carbon contents in soil: Vis-NIR vs. MIR spectroscopy". W 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE, 2012. http://dx.doi.org/10.1109/cecnet.2012.6202181.
Pełny tekst źródłaStanbery, Christopher. "CONTROLS ON THE PRESENCE AND AMOUNT OF SOIL INORGANIC CARBON IN A TRANSITIONAL SEMI-ARID WATERSHED". W 68th Annual Rocky Mountain GSA Section Meeting. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016rm-276261.
Pełny tekst źródłaS.Shete, Rahul, Manisha M. Patil, Pallavi R.Bhosale, Amol A. Chougule i Prakash D.Raut. "Impact Assessment of Solid Waste on Groundwater and Soil in and around of Dumping site, Kasba Bawada, Kolhapur". W 7th GoGreen Summit 2021. Technoarete, 2021. http://dx.doi.org/10.36647/978-93-92106-02-6.17.
Pełny tekst źródła"Advanced thermo-chemical treatment of waste Bambusa Vulgaris for sustainable resource recovery". W Sustainable Processes and Clean Energy Transition. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902516-22.
Pełny tekst źródłaSheldon, Nathan, i Rebecca Dzombak. "SOILS, PLANTS, AND THE EVOLUTION OF THE INORGANIC CARBON CYCLE ON LAND". W GSA Connects 2021 in Portland, Oregon. Geological Society of America, 2021. http://dx.doi.org/10.1130/abs/2021am-371246.
Pełny tekst źródłaOnishi, Bruno Seiki Domingos, Ricardo Bortoletto-Santos, Elias Paiva Ferreira Neto i Sidney José Lima Ribeiro. "Development of hybrid organic-inorganic coating based on carbon dots on bacterial cellulose using sol-gel route". W Latin America Optics and Photonics Conference. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/laop.2022.m3c.5.
Pełny tekst źródłaFakhari, Amir Hossein, Ayat Gharehghani, Mohammad Mahdi Salahi, Amin Mahmoudzadeh Andwari, Maciej Mikulski, Jacek Hunicz i Juho Könnö. "Numerical Investigation of Ammonia-Diesel Fuelled Engine Operated in RCCI Mode". W 16th International Conference on Engines & Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-24-0057.
Pełny tekst źródłaRaporty organizacyjne na temat "Soil Inorganic Carbon"
Bar-Tal, Asher, Paul R. Bloom, Pinchas Fine, C. Edward Clapp, Aviva Hadas, Rodney T. Venterea, Dan Zohar, Dong Chen i Jean-Alex Molina. Effects of soil properties and organic residues management on C sequestration and N losses. United States Department of Agriculture, sierpień 2008. http://dx.doi.org/10.32747/2008.7587729.bard.
Pełny tekst źródłaLitaor, Iggy, James Ippolito, Iris Zohar i Michael Massey. Phosphorus capture recycling and utilization for sustainable agriculture using Al/organic composite water treatment residuals. United States Department of Agriculture, styczeń 2015. http://dx.doi.org/10.32747/2015.7600037.bard.
Pełny tekst źródła