Artykuły w czasopismach na temat „Soil biology”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Soil biology.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Soil biology”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Holt, John. "Soil biology". Geoderma 53, nr 1-2 (maj 1992): 173–74. http://dx.doi.org/10.1016/0016-7061(92)90032-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Tate, Robert L. "Soil Biology. 1989". Soil Science 150, nr 5 (listopad 1990): 828. http://dx.doi.org/10.1097/00010694-199011000-00009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Valentine, Barry D. "Soil Biology Guide". American Entomologist 38, nr 3 (1992): 181–82. http://dx.doi.org/10.1093/ae/38.3.181a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

New, T. R. "Soil biology guide". Soil Biology and Biochemistry 23, nr 7 (styczeń 1991): 707–8. http://dx.doi.org/10.1016/0038-0717(91)90088-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Lehman, R. M., V. Acosta-Martinez, J. S. Buyer, C. A. Cambardella, H. P. Collins, T. F. Ducey, J. J. Halvorson i in. "Soil biology for resilient, healthy soil". Journal of Soil and Water Conservation 70, nr 1 (1.01.2015): 12A—18A. http://dx.doi.org/10.2489/jswc.70.1.12a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Coleman, D. C., E. P. Odum i D. A. Crossley. "Soil biology, soil ecology, and global change". Biology and Fertility of Soils 14, nr 2 (październik 1992): 104–11. http://dx.doi.org/10.1007/bf00336258.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Robinson, Clare, F. Schinner, R. Ohlinger, E. Kandeler i R. Margesin. "Methods in Soil Biology." Journal of Ecology 85, nr 3 (czerwiec 1997): 404. http://dx.doi.org/10.2307/2960521.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Edwards, Clive A. "Soil Biology. Tertiary Level Biology. Martin Wood". Quarterly Review of Biology 66, nr 2 (czerwiec 1991): 224. http://dx.doi.org/10.1086/417204.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Lussenhop, John. "Soil Biology for Ecological Students". Ecology 71, nr 6 (grudzień 1990): 2399. http://dx.doi.org/10.2307/1938658.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Usher, M. B., P. Lebrun, H. M. Andre, A. De Medts, C. Gregoire-Wibo i G. Wauthy. "New Trends in Soil Biology". Journal of Animal Ecology 54, nr 1 (luty 1985): 337. http://dx.doi.org/10.2307/4644.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Lynch, J. M. "Soil Biology: Accomplishments and Potential". Soil Science Society of America Journal 51, nr 6 (listopad 1987): 1409–12. http://dx.doi.org/10.2136/sssaj1987.03615995005100060004x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Mitchell, Myron J. "Soil Biology Guide.Daniel L. Dindal". Quarterly Review of Biology 66, nr 1 (marzec 1991): 101–2. http://dx.doi.org/10.1086/417109.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Anderson, J. M., i J. S. I. Ingram. "Tropical Soil Biology and Fertility". Soil Science 157, nr 4 (kwiecień 1994): 265. http://dx.doi.org/10.1097/00010694-199404000-00012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Ohtonen, R., S. Aikio i H. Väre. "Ecological theories in soil biology". Soil Biology and Biochemistry 29, nr 11-12 (listopad 1997): 1613–19. http://dx.doi.org/10.1016/s0038-0717(97)00063-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Geisen, Stefan, Edward A. D. Mitchell, Sina Adl, Michael Bonkowski, Micah Dunthorn, Flemming Ekelund, Leonardo D. Fernández i in. "Soil protists: a fertile frontier in soil biology research". FEMS Microbiology Reviews 42, nr 3 (13.02.2018): 293–323. http://dx.doi.org/10.1093/femsre/fuy006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Mantoni, Cristina, Marika Pellegrini, Leonardo Dapporto, Maria Del Gallo, Loretta Pace, Donato Silveri i Simone Fattorini. "Comparison of Soil Biology Quality in Organically and Conventionally Managed Agro-Ecosystems Using Microarthropods". Agriculture 11, nr 10 (19.10.2021): 1022. http://dx.doi.org/10.3390/agriculture11101022.

Pełny tekst źródła
Streszczenie:
Since management practices profoundly influence soil characteristics, the adoption of sustainable agro-ecological practices is essential for soil health conservation. We compared soil health in organic and conventional fields in the Abruzzi region (central Italy) by using (1) the soil biology quality (QBS) index (which expresses the level of specialisation in soil environment shown by microarthropods) and (2) microarthropod diversity expressed by Hill numbers. QBS values were calculated using both the original formulation based on only presence/absence data and a new abundance-based version. We found that organic management improves soil biology quality, which encourages the use of organic farming to maintain soil health. Including arthropod abundance in QBS calculation does not change the main outcomes, which supports the use of its original, speedier formulation. We also found that agricultural fields included in protected areas had greater soil health, which shows the importance of the matrix in determining agricultural soil health and highlights the importance of land protection in preserving biodiversity even in managed soils. Finally, we found that soil biology quality and microarthropod community structure are distinctly influenced by certain physical and chemical characteristics of the soil, which supports the use of microarthropods as biological indicators.
Style APA, Harvard, Vancouver, ISO itp.
17

Coyne, M. S., E. M. Pena-Yewtukhiw, J. H. Grove, A. C. Sant'Anna i D. Mata-Padrino. "Soil health – It's not all biology". Soil Security 6 (marzec 2022): 100051. http://dx.doi.org/10.1016/j.soisec.2022.100051.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Burns, R. "Soil Biology & Biochemistry Citation Classics". Soil Biology and Biochemistry 36, nr 1 (styczeń 2004): 3. http://dx.doi.org/10.1016/j.soilbio.2003.10.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Briggs, Winslow R. "Plant Biology: Seedling Emergence through Soil". Current Biology 26, nr 2 (styczeń 2016): R68—R70. http://dx.doi.org/10.1016/j.cub.2015.12.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Rao, D. L. N. "Experiments in soil biology and biochemistry". Indian Journal of Microbiology 47, nr 2 (czerwiec 2007): 184. http://dx.doi.org/10.1007/s12088-007-0037-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Forge, T., G. Neilsen, D. Neilsen, D. O'Gorman, E. Hogue i D. Angers. "ORGANIC ORCHARD SOIL MANAGEMENT PRACTICES AFFECT SOIL BIOLOGY AND ORGANIC MATTER". Acta Horticulturae, nr 1076 (marzec 2015): 77–84. http://dx.doi.org/10.17660/actahortic.2015.1076.8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Bölter, Manfred. "Soil development and soil biology on King George Island, Maritime Antarctic". Polish Polar Research 32, nr 2 (1.01.2011): 105–16. http://dx.doi.org/10.2478/v10183-011-0002-z.

Pełny tekst źródła
Streszczenie:
Soil development and soil biology on King George Island, Maritime AntarcticThis review covers aspects of soil science and soil biology of Antarctica with special focus on King George Island, South Shetlands, the martitime Antarctic. New approaches in soil descriptions and soil taxonomy show a great variety of soil types, related to different parent material, mainly volcanic origin, as well as on influences by soil biological processes. The spread of higher rooting plants attract microorganisms, nematodes and collemboles which in turn build new organic material and change the environment for further successors. Microbial communities are drivers with respect to metabolic and physiological properties indicating a great potential in a changing environment. The literature review also shows a lack of investigations on processes of carbon and nitrogen turnover, despite wide knowledge on its standing stock in different environments. Further, only few reports were found on the processes of humification. Only few data are available which can be regarded as long term monitorings, hence, such projects need to be established in order to follow ecological changes.
Style APA, Harvard, Vancouver, ISO itp.
23

Wong, J. W. C., K. M. Lai, M. Fang i K. K. Ma. "Soil Biology of Low Grade Landfill Soil with Sewage Sludge Amendment". Environmental Technology 21, nr 11 (listopad 2000): 1233–38. http://dx.doi.org/10.1080/09593332108618149.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Hüberli, Daniel. "Soil health, soil biology, soilborne diseases and sustainable agriculture: A guide". Australasian Plant Pathology 46, nr 4 (19.05.2017): 387. http://dx.doi.org/10.1007/s13313-017-0493-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

O’DONOVAN, J. T., i M. P. SHARMA. "THE BIOLOGY OF CANADIAN WEEDS.: 78. Galeopsis tetrahit L." Canadian Journal of Plant Science 67, nr 3 (1.07.1987): 787–96. http://dx.doi.org/10.4141/cjps87-106.

Pełny tekst źródła
Streszczenie:
Galeopsis tetrahit is an annual weed which was introduced to North America from Eurasia. It is present in all Canadian provinces and occupies a wide range of habitats including cultivated fields. It favors well-watered nutrient-rich soils and occurs infrequently in the drier brown soil zones of the southern Canadian prairies. Low soil moisture may be a major factor limiting its distribution and spread. It can reduce crop yields, contaminate crop seed and act as a reservoir for disease-causing organisms. A number of herbicides are available for its control.Key words: Hemp-nettle, Galeopsis tetrahit L., weed ecology, weed biology
Style APA, Harvard, Vancouver, ISO itp.
26

Blagodatsky, Sergey, i Pete Smith. "Soil physics meets soil biology: Towards better mechanistic prediction of greenhouse gas emissions from soil". Soil Biology and Biochemistry 47 (kwiecień 2012): 78–92. http://dx.doi.org/10.1016/j.soilbio.2011.12.015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Vilkova, Valeria, Kamil Kazeev, Aslan Shkhapatsev, Mikhail Nizhelsky i Sergey Kolesnikov. "Pyrogenic impact on biology activity of chernozem in model experiments". АгроЭкоИнфо 5, nr 47 (24.10.2021): 20. http://dx.doi.org/10.51419/20215520.

Pełny tekst źródła
Streszczenie:
The influence of the pyrogenic effect on the biological properties of Haplic chernozem was investigated. For this, a series of model experiments was set up to simulate fires of various duration and intensity. A significant change in the biological properties of soils was found, as well as differences in the reactions of biological indicators to the pyrogenic effect. In different experiments, a different nature of changes in the reaction of the soil environment and the content of organic carbon, an increase in the content of readily soluble salts, was established. In all experiments, inhibition of catalase activity was noted, changes in peroxidase activity were more contradictory. In one of the experiments, stimulation of peroxidase activity was found. In order to study the methods of restoring the biological activity of post-pyrogenic soils, a model experiment was carried out using potassium humate, complex mineral fertilizer and phytoremediation. At the same time, no unambiguous results were obtained that would make it possible to recommend methods for the accelerated recovery of post-pyrogenic soils. Keywords: BIODIAGNOSTICS, FIRES, POSTPYROGENIC SOILS, ENZYME ACTIVITY, SOIL RESTORATION
Style APA, Harvard, Vancouver, ISO itp.
28

Wyatt, Briana, i Susan Chapman. "Soil Biology, Chemistry, and Physics … Oh My!" CSA News 66, nr 6 (30.05.2021): 44. http://dx.doi.org/10.1002/csan.20485.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Uroz, S., A. Bispo, M. Buee, A. Cebron, J. Cortet, T. Decaens, M. Hedde, G. Peres, M. Vennetier i C. Villenave. "Highlights on progress in forest soil biology". Revue Forestière Française, SP (2014): Fr.], ISSN 0035. http://dx.doi.org/10.4267/2042/56266.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Creamer, R. E. "The Biology of Soil - by R.D. Bardgett". European Journal of Soil Science 58, nr 5 (październik 2007): 1214. http://dx.doi.org/10.1111/j.1365-2389.2007.00943_2.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Andrén, O., H. Kirchmann, T. Kätterer, J. Magid, E. A. Paul i D. C. Coleman. "Visions of a more precise soil biology". European Journal of Soil Science 59, nr 2 (kwiecień 2008): 380–90. http://dx.doi.org/10.1111/j.1365-2389.2008.01018.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

BURNS, R. "Soil Biology & Biochemistry Citation Classic IV". Soil Biology and Biochemistry 38, nr 9 (wrzesień 2006): 2509. http://dx.doi.org/10.1016/j.soilbio.2006.03.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic VI". Soil Biology and Biochemistry 41, nr 10 (październik 2009): 2029–30. http://dx.doi.org/10.1016/j.soilbio.2009.07.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic VII". Soil Biology and Biochemistry 42, nr 9 (wrzesień 2010): 1361–62. http://dx.doi.org/10.1016/j.soilbio.2010.05.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic VIII". Soil Biology and Biochemistry 42, nr 12 (grudzień 2010): 2037–38. http://dx.doi.org/10.1016/j.soilbio.2010.08.028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic IX". Soil Biology and Biochemistry 43, nr 5 (maj 2011): 871–72. http://dx.doi.org/10.1016/j.soilbio.2011.01.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic X". Soil Biology and Biochemistry 43, nr 8 (sierpień 2011): 1619–20. http://dx.doi.org/10.1016/j.soilbio.2011.03.021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic XI". Soil Biology and Biochemistry 64 (wrzesień 2013): 200–202. http://dx.doi.org/10.1016/j.soilbio.2012.09.023.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic XII". Soil Biology and Biochemistry 68 (styczeń 2014): A1—A3. http://dx.doi.org/10.1016/j.soilbio.2013.09.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Szegi, J. "Soil Biology and Conservation of the Biosphere". Soil Science 141, nr 3 (marzec 1986): 245. http://dx.doi.org/10.1097/00010694-198603000-00012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic XIII". Soil Biology and Biochemistry 80 (styczeń 2015): A1—A2. http://dx.doi.org/10.1016/j.soilbio.2014.10.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic XIV". Soil Biology and Biochemistry 105 (luty 2017): A1—A2. http://dx.doi.org/10.1016/j.soilbio.2016.08.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic XV". Soil Biology and Biochemistry 121 (czerwiec 2018): A1—A2. http://dx.doi.org/10.1016/j.soilbio.2018.01.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic XVI". Soil Biology and Biochemistry 123 (sierpień 2018): A1—A2. http://dx.doi.org/10.1016/j.soilbio.2018.03.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic XVII". Soil Biology and Biochemistry 147 (sierpień 2020): 107818. http://dx.doi.org/10.1016/j.soilbio.2020.107818.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Burns, Richard G. "Soil Biology & Biochemistry Citation Classics II". Soil Biology and Biochemistry 36, nr 9 (wrzesień 2004): 1367. http://dx.doi.org/10.1016/j.soilbio.2004.06.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Burns, Richard G. "Soil Biology & Biochemistry Citation Classics III". Soil Biology and Biochemistry 37, nr 5 (maj 2005): 809. http://dx.doi.org/10.1016/j.soilbio.2004.12.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Murphy, Daniel V., John A. Kirkegaard i Pauline M. Mele. "Preface: Soil biology in Australian farming systems". Soil Research 44, nr 4 (2006): I. http://dx.doi.org/10.1071/srv44n4_pr.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Bhunia, Shantanu, Ankita Bhowmik, Rambilash Mallick i Joydeep Mukherjee. "Agronomic Efficiency of Animal-Derived Organic Fertilizers and Their Effects on Biology and Fertility of Soil: A Review". Agronomy 11, nr 5 (22.04.2021): 823. http://dx.doi.org/10.3390/agronomy11050823.

Pełny tekst źródła
Streszczenie:
Healthy soils are essential for progressive agronomic activities. Organic fertilization positively affects agro-ecosystems by stimulating plant growth, enhancing crop productivity and fruit quality and improving soil fertility. Soil health and food security are the key elements of Organic Agriculture 3.0. Landfilling and/or open-dumping of animal wastes produced from slaughtering cause environmental pollution by releasing toxic substances, leachate and greenhouse gases. Direct application of animal carcasses to agricultural fields can adversely affect soil microbiota. Effective waste management technologies such as thermal drying, composting, vermicomposting and anaerobic digestion transform animal wastes, making them suitable for soil application by supplying soil high in organic carbon and total nitrogen. Recent agronomic practices applied recycled animal wastes as organic fertilizer in crop production. However, plants may not survive at a high fertilization rate due to the presence of labile carbon fraction in animal wastes. Therefore, dose calculation and determination of fertilizer application frequency are crucial for agronomists. Long-term animal waste-derived organic supplementation promotes copiotrophic microbial abundance due to enhanced substrate affinity, provides micronutrients to soils and protects crops from soil-borne pathogens owing to formation of plant-beneficial microbial consortia. Animal waste-derived organically fertilized soils possess higher urease and acid phosphatase activities. Furthermore, waste to fertilizer conversion is a low-energy requiring process that promotes circular bio-economy. Thus, considering the promotion of soil fertility, microbial abundance, disease protection and economic considerations application of animal-waste-derived organic fertilizer should be the mainstay for sustainable agriculture.
Style APA, Harvard, Vancouver, ISO itp.
50

Haynes, R. J., i M. H. Graham. "Soil biology and biochemistry - a new direction for South African soil science?" South African Journal of Plant and Soil 21, nr 5 (styczeń 2004): 330–44. http://dx.doi.org/10.1080/02571862.2004.10635068.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii