Artykuły w czasopismach na temat „SOFTWARE FAULT PRONENESS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „SOFTWARE FAULT PRONENESS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Denaro, Giovanni, Mauro Pezzè i Sandro Morasca. "Towards Industrially Relevant Fault-Proneness Models". International Journal of Software Engineering and Knowledge Engineering 13, nr 04 (sierpień 2003): 395–417. http://dx.doi.org/10.1142/s0218194003001366.
Pełny tekst źródłaGatrell, Matt, i Steve Counsell. "Faults and Their Relationship to Implemented Patterns, Coupling and Cohesion in Commercial C# Software". International Journal of Information System Modeling and Design 3, nr 2 (kwiecień 2012): 69–88. http://dx.doi.org/10.4018/jismd.2012040103.
Pełny tekst źródłaBhandari, Guru Prasad, Ratneshwer Gupta i Satyanshu Kumar Upadhyay. "An approach for fault prediction in SOA-based systems using machine learning techniques". Data Technologies and Applications 53, nr 4 (3.09.2019): 397–421. http://dx.doi.org/10.1108/dta-03-2019-0040.
Pełny tekst źródłaShatnawi, Raed, i Alok Mishra. "An Empirical Study on Software Fault Prediction Using Product and Process Metrics". International Journal of Information Technologies and Systems Approach 14, nr 1 (styczeń 2021): 62–78. http://dx.doi.org/10.4018/ijitsa.2021010104.
Pełny tekst źródłaSingh, Rajvir, Anita Singhrova i Rajesh Bhatia. "Optimized Test Case Generation for Object Oriented Systems Using Weka Open Source Software". International Journal of Open Source Software and Processes 9, nr 3 (lipiec 2018): 15–35. http://dx.doi.org/10.4018/ijossp.2018070102.
Pełny tekst źródłaGondra, Iker. "Applying machine learning to software fault-proneness prediction". Journal of Systems and Software 81, nr 2 (luty 2008): 186–95. http://dx.doi.org/10.1016/j.jss.2007.05.035.
Pełny tekst źródłaShatnawi, Raed. "Software fault prediction using machine learning techniques with metric thresholds". International Journal of Knowledge-based and Intelligent Engineering Systems 25, nr 2 (26.07.2021): 159–72. http://dx.doi.org/10.3233/kes-210061.
Pełny tekst źródłaKhanna, Munish, Abhishek Toofani, Siddharth Bansal i Mohammad Asif. "Performance Comparison of Various Algorithms During Software Fault Prediction". International Journal of Grid and High Performance Computing 13, nr 2 (kwiecień 2021): 70–94. http://dx.doi.org/10.4018/ijghpc.2021040105.
Pełny tekst źródłaJ. Pai, Ganesh, i Joanne Bechta Dugan. "Empirical Analysis of Software Fault Content and Fault Proneness Using Bayesian Methods". IEEE Transactions on Software Engineering 33, nr 10 (październik 2007): 675–86. http://dx.doi.org/10.1109/tse.2007.70722.
Pełny tekst źródłaGatrell, Matt, i Steve Counsell. "Size, Inheritance, Change and Fault-proneness in C# software." Journal of Object Technology 9, nr 5 (2010): 29. http://dx.doi.org/10.5381/jot.2010.9.5.a2.
Pełny tekst źródłaMizuno, Osamu, Naoki Kawashima i Kimiaki Kawamoto. "Fault-Prone Module Prediction Approaches Using Identifiers in Source Code". International Journal of Software Innovation 3, nr 1 (styczeń 2015): 36–49. http://dx.doi.org/10.4018/ijsi.2015010103.
Pełny tekst źródłaGupta, Mansi, Kumar Rajnish i Vandana Bhattacharjee. "Impact of Parameter Tuning for Optimizing Deep Neural Network Models for Predicting Software Faults". Scientific Programming 2021 (11.06.2021): 1–17. http://dx.doi.org/10.1155/2021/6662932.
Pełny tekst źródłaLee, Shou-Yu, W. Eric Wong, Yihao Li i William Cheng-Chung Chu. "Software Fault-Proneness Analysis based on Composite Developer-Module Networks". IEEE Access 9 (2021): 155314–34. http://dx.doi.org/10.1109/access.2021.3128438.
Pełny tekst źródłaIshrat. "Pattern Trees for Fault-Proneness Detection in Object-Oriented Software". Journal of Computer Science 6, nr 10 (1.10.2010): 1078–82. http://dx.doi.org/10.3844/jcssp.2010.1078.1082.
Pełny tekst źródłaKhan, R. A., i K. Mustafa. "Fault Proneness Model for Object-Oriented Software: Design Phase Perspective". Information Technology Journal 7, nr 4 (1.05.2008): 698–701. http://dx.doi.org/10.3923/itj.2008.698.701.
Pełny tekst źródłaLi, Yihao, W. Eric Wong, Shou-Yu Lee i Franz Wotawa. "Using Tri-Relation Networks for Effective Software Fault-Proneness Prediction". IEEE Access 7 (2019): 63066–80. http://dx.doi.org/10.1109/access.2019.2916615.
Pełny tekst źródłaBassey, Isong. "Enhancing Software Maintenance via Early Prediction of Fault-Prone Object-Oriented Classes". International Journal of Software Engineering and Knowledge Engineering 27, nr 04 (maj 2017): 515–37. http://dx.doi.org/10.1142/s021819401750019x.
Pełny tekst źródłaReddy, N. Rajasekhar. "Risk chain prediction metrics for predicting fault proneness in Software Systems". IOSR Journal of Engineering 02, nr 08 (sierpień 2012): 190–95. http://dx.doi.org/10.9790/3021-0281190195.
Pełny tekst źródłaSikka, Geeta, Renu Dhir i N. A. Aarti. "Grey relational classification algorithm for software fault proneness with SOM clustering". International Journal of Data Mining, Modelling and Management 12, nr 1 (2020): 28. http://dx.doi.org/10.1504/ijdmmm.2020.10027275.
Pełny tekst źródłaAarti, N. A., Geeta Sikka i Renu Dhir. "Grey relational classification algorithm for software fault proneness with SOM clustering". International Journal of Data Mining, Modelling and Management 12, nr 1 (2020): 28. http://dx.doi.org/10.1504/ijdmmm.2020.105599.
Pełny tekst źródłaAbidi, Mouna, Md Saidur Rahman, Moses Openja i Foutse Khomh. "Are Multi-Language Design Smells Fault-Prone? An Empirical Study". ACM Transactions on Software Engineering and Methodology 30, nr 3 (maj 2021): 1–56. http://dx.doi.org/10.1145/3432690.
Pełny tekst źródłaKapila, Heena, i Satwinder Singh. "Analysis of CK Metrics to Predict Software Fault-Proneness using Bayesian Inference". International Journal of Computer Applications 74, nr 2 (26.07.2013): 1–4. http://dx.doi.org/10.5120/12854-9152.
Pełny tekst źródłaBriand, L. C., W. L. Melo i J. Wust. "Assessing the applicability of fault-proneness models across object-oriented software projects". IEEE Transactions on Software Engineering 28, nr 7 (lipiec 2002): 706–20. http://dx.doi.org/10.1109/tse.2002.1019484.
Pełny tekst źródłaAl Dallal, Jehad. "Predicting Fault-Proneness of Reused Object-Oriented Classes in Software Post-Releases". Arabian Journal for Science and Engineering 43, nr 12 (18.12.2017): 7153–66. http://dx.doi.org/10.1007/s13369-017-3012-2.
Pełny tekst źródłaZhao, Yangyang, Yibiao Yang, Hongmin Lu, Yuming Zhou, Qinbao Song i Baowen Xu. "An empirical analysis of package-modularization metrics: Implications for software fault-proneness". Information and Software Technology 57 (styczeń 2015): 186–203. http://dx.doi.org/10.1016/j.infsof.2014.09.006.
Pełny tekst źródłaBoucher, Alexandre, i Mourad Badri. "Software metrics thresholds calculation techniques to predict fault-proneness: An empirical comparison". Information and Software Technology 96 (kwiecień 2018): 38–67. http://dx.doi.org/10.1016/j.infsof.2017.11.005.
Pełny tekst źródłaAl Dallal, Jehad. "Predicting Object-Oriented Class Fault-Proneness: A Replication Study". Journal of Software 13, nr 5 (maj 2018): 269–76. http://dx.doi.org/10.17706/jsw.13.5.269-276.
Pełny tekst źródłaAggarwal, K. K., Yogesh Singh, Arvinder Kaur i Ruchika Malhotra. "Investigating effect of Design Metrics on Fault Proneness in Object-Oriented Systems." Journal of Object Technology 6, nr 10 (2007): 127. http://dx.doi.org/10.5381/jot.2007.6.10.a5.
Pełny tekst źródłaOhlsson, Magnus C., Anneliese Amschler Andrews i Claes Wohlin. "Modelling fault-proneness statistically over a sequence of releases: a case study". Journal of Software Maintenance and Evolution: Research and Practice 13, nr 3 (2001): 167–99. http://dx.doi.org/10.1002/smr.229.
Pełny tekst źródłaPattnaik, Saumendra, i Binod Kumar Pattanayak. "Empirical analysis of software quality prediction using a TRAINBFG algorithm". International Journal of Engineering & Technology 7, nr 2.6 (11.03.2018): 259. http://dx.doi.org/10.14419/ijet.v7i2.6.10780.
Pełny tekst źródłaKozlov, Denis. "Fault-Proneness of Open Source Software: Exploring its Relations to Internal Software Quality and Maintenance Process". Open Software Engineering Journal 7, nr 1 (22.02.2013): 1–23. http://dx.doi.org/10.2174/1874107x01307010001.
Pełny tekst źródłaISONG, BASSEY, i EKABUA OBETEN. "A SYSTEMATIC REVIEW OF THE EMPIRICAL VALIDATION OF OBJECT-ORIENTED METRICS TOWARDS FAULT-PRONENESS PREDICTION". International Journal of Software Engineering and Knowledge Engineering 23, nr 10 (grudzień 2013): 1513–40. http://dx.doi.org/10.1142/s0218194013500484.
Pełny tekst źródłaAl Dallal, Jehad, i Sandro Morasca. "Investigating the impact of fault data completeness over time on predicting class fault-proneness". Information and Software Technology 95 (marzec 2018): 86–105. http://dx.doi.org/10.1016/j.infsof.2017.11.001.
Pełny tekst źródłaGatrell, M., i S. Counsell. "The effect of refactoring on change and fault-proneness in commercial C# software". Science of Computer Programming 102 (maj 2015): 44–56. http://dx.doi.org/10.1016/j.scico.2014.12.002.
Pełny tekst źródłaQusef, Abdallah, Mahmoud O. Elish i David Binkley. "An Exploratory Study of the Relationship Between Software Test Smells and Fault-Proneness". IEEE Access 7 (2019): 139526–36. http://dx.doi.org/10.1109/access.2019.2943488.
Pełny tekst źródłaSikka, Sunil, Utpal Shrivastava i Pooja . "Role of CK Metrics to Identify Fault-Proneness in Object Oriented Software A Survey". International Journal of Computer Sciences and Engineering 6, nr 5 (31.05.2018): 1162–64. http://dx.doi.org/10.26438/ijcse/v6i5.11621164.
Pełny tekst źródłaAarti, Geeta Sikka i Renu Dhir. "Novel Grey Relational Feature Extraction Algorithm for Software Fault-Proneness Using BBO (B-GRA)". Arabian Journal for Science and Engineering 45, nr 4 (25.03.2020): 2645–62. http://dx.doi.org/10.1007/s13369-020-04445-2.
Pełny tekst źródłaMahdieh, Mostafa, Seyed-Hassan Mirian-Hosseinabadi, Khashayar Etemadi, Ali Nosrati i Sajad Jalali. "Incorporating fault-proneness estimations into coverage-based test case prioritization methods". Information and Software Technology 121 (maj 2020): 106269. http://dx.doi.org/10.1016/j.infsof.2020.106269.
Pełny tekst źródłaBavota, Gabriele, Mario Linares-Vasquez, Carlos Eduardo Bernal-Cardenas, Massimiliano Di Penta, Rocco Oliveto i Denys Poshyvanyk. "The Impact of API Change- and Fault-Proneness on the User Ratings of Android Apps". IEEE Transactions on Software Engineering 41, nr 4 (1.04.2015): 384–407. http://dx.doi.org/10.1109/tse.2014.2367027.
Pełny tekst źródłaMala, D. Jeya. "Investigating the Effect of Sensitivity and Severity Analysis on Fault Proneness in Open Source Software". International Journal of Open Source Software and Processes 8, nr 1 (styczeń 2017): 42–66. http://dx.doi.org/10.4018/ijossp.2017010103.
Pełny tekst źródłaHuang, Peng, i Jie Zhu. "Predicting the fault-proneness of class hierarchy in object-oriented software using a layered kernel". Journal of Zhejiang University-SCIENCE A 9, nr 10 (październik 2008): 1390–97. http://dx.doi.org/10.1631/jzus.a0720073.
Pełny tekst źródłaKoteswara Rao, K., i G. S. V. P. Raju. "Reducing interactive fault proneness in software application using genetic algorithm based optimal directed random testing". International Journal of Computers and Applications 41, nr 4 (19.01.2018): 296–305. http://dx.doi.org/10.1080/1206212x.2017.1417769.
Pełny tekst źródłaShatnawi, Raed, i Ziad Al Sharif. "A guided oversampling technique to improve the prediction of software fault-proneness for imbalanced data". International Journal of Knowledge Engineering and Data Mining 2, nr 2/3 (2012): 200. http://dx.doi.org/10.1504/ijkedm.2012.051241.
Pełny tekst źródłaWong, W. Eric, Joseph R. Horgan, Michael Syring, Wayne Zage i Dolores Zage. "Applying design metrics to predict fault-proneness: a case study on a large-scale software system". Software: Practice and Experience 30, nr 14 (2000): 1587–608. http://dx.doi.org/10.1002/1097-024x(20001125)30:14<1587::aid-spe352>3.0.co;2-1.
Pełny tekst źródłaShatnawi, Raed, i Qutaibah Althebyan. "An Empirical Study of the Effect of Power Law Distribution on the Interpretation of OO Metrics". ISRN Software Engineering 2013 (30.01.2013): 1–18. http://dx.doi.org/10.1155/2013/198937.
Pełny tekst źródłaIsong, Bassey, i Obeten Ekabua. "State-of-the-Art in Empirical Validation of Software Metrics for Fault Proneness Prediction: Systematic Review". International Journal of Computer Science & Engineering Survey 6, nr 6 (31.12.2015): 1–18. http://dx.doi.org/10.5121/ijcses.2015.6601.
Pełny tekst źródłaAl Dallal, Jehad. "Categorisation-based approach for predicting the fault-proneness of object-oriented classes in software post-releases". IET Software 14, nr 5 (1.10.2020): 525–34. http://dx.doi.org/10.1049/iet-sen.2019.0326.
Pełny tekst źródłaAggarwal, K. K., Yogesh Singh, Arvinder Kaur i Ruchika Malhotra. "Empirical analysis for investigating the effect of object-oriented metrics on fault proneness: a replicated case study". Software Process: Improvement and Practice 14, nr 1 (styczeń 2009): 39–62. http://dx.doi.org/10.1002/spip.389.
Pełny tekst źródłaMutha, Chetan, David Jensen, Irem Tumer i Carol Smidts. "An integrated multidomain functional failure and propagation analysis approach for safe system design". Artificial Intelligence for Engineering Design, Analysis and Manufacturing 27, nr 4 (24.04.2013): 317–47. http://dx.doi.org/10.1017/s0890060413000152.
Pełny tekst źródłaGuerrouj, Latifa, Zeinab Kermansaravi, Venera Arnaoudova, Benjamin C. M. Fung, Foutse Khomh, Giuliano Antoniol i Yann-Gaël Guéhéneuc. "Investigating the relation between lexical smells and change- and fault-proneness: an empirical study". Software Quality Journal 25, nr 3 (9.05.2016): 641–70. http://dx.doi.org/10.1007/s11219-016-9318-6.
Pełny tekst źródła