Gotowa bibliografia na temat „SOFTWARE FAULT PRONENESS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „SOFTWARE FAULT PRONENESS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "SOFTWARE FAULT PRONENESS"
Denaro, Giovanni, Mauro Pezzè i Sandro Morasca. "Towards Industrially Relevant Fault-Proneness Models". International Journal of Software Engineering and Knowledge Engineering 13, nr 04 (sierpień 2003): 395–417. http://dx.doi.org/10.1142/s0218194003001366.
Pełny tekst źródłaGatrell, Matt, i Steve Counsell. "Faults and Their Relationship to Implemented Patterns, Coupling and Cohesion in Commercial C# Software". International Journal of Information System Modeling and Design 3, nr 2 (kwiecień 2012): 69–88. http://dx.doi.org/10.4018/jismd.2012040103.
Pełny tekst źródłaBhandari, Guru Prasad, Ratneshwer Gupta i Satyanshu Kumar Upadhyay. "An approach for fault prediction in SOA-based systems using machine learning techniques". Data Technologies and Applications 53, nr 4 (3.09.2019): 397–421. http://dx.doi.org/10.1108/dta-03-2019-0040.
Pełny tekst źródłaShatnawi, Raed, i Alok Mishra. "An Empirical Study on Software Fault Prediction Using Product and Process Metrics". International Journal of Information Technologies and Systems Approach 14, nr 1 (styczeń 2021): 62–78. http://dx.doi.org/10.4018/ijitsa.2021010104.
Pełny tekst źródłaSingh, Rajvir, Anita Singhrova i Rajesh Bhatia. "Optimized Test Case Generation for Object Oriented Systems Using Weka Open Source Software". International Journal of Open Source Software and Processes 9, nr 3 (lipiec 2018): 15–35. http://dx.doi.org/10.4018/ijossp.2018070102.
Pełny tekst źródłaGondra, Iker. "Applying machine learning to software fault-proneness prediction". Journal of Systems and Software 81, nr 2 (luty 2008): 186–95. http://dx.doi.org/10.1016/j.jss.2007.05.035.
Pełny tekst źródłaShatnawi, Raed. "Software fault prediction using machine learning techniques with metric thresholds". International Journal of Knowledge-based and Intelligent Engineering Systems 25, nr 2 (26.07.2021): 159–72. http://dx.doi.org/10.3233/kes-210061.
Pełny tekst źródłaKhanna, Munish, Abhishek Toofani, Siddharth Bansal i Mohammad Asif. "Performance Comparison of Various Algorithms During Software Fault Prediction". International Journal of Grid and High Performance Computing 13, nr 2 (kwiecień 2021): 70–94. http://dx.doi.org/10.4018/ijghpc.2021040105.
Pełny tekst źródłaJ. Pai, Ganesh, i Joanne Bechta Dugan. "Empirical Analysis of Software Fault Content and Fault Proneness Using Bayesian Methods". IEEE Transactions on Software Engineering 33, nr 10 (październik 2007): 675–86. http://dx.doi.org/10.1109/tse.2007.70722.
Pełny tekst źródłaGatrell, Matt, i Steve Counsell. "Size, Inheritance, Change and Fault-proneness in C# software." Journal of Object Technology 9, nr 5 (2010): 29. http://dx.doi.org/10.5381/jot.2010.9.5.a2.
Pełny tekst źródłaRozprawy doktorskie na temat "SOFTWARE FAULT PRONENESS"
Abdilrahim, Ahmad, i Caesar Alhawi. "Studying the Relation BetweenChange- and Fault-proneness : Are Change-prone Classes MoreFault-prone, and Vice-versa?" Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-97168.
Pełny tekst źródłaDuc, Anh Nguyen. "The impact of design complexity on software cost and quality". Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-5708.
Pełny tekst źródłaDeniz, Berkhan. "Investigation Of The Effects Of Reuse On Software Quality In An Industrial Setting". Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615318/index.pdf.
Pełny tekst źródłas leading defense industry company: Aselsan&rsquo
s software engineering department. We aimed to explore their real-life software projects and interpret reuse and quality relations for their projects. With this intention, we defined four different hypotheses to determine reuse and quality relations
and in order to confirm these hypotheses
we designed three separate case studies. In these case studies, we collected and calculated reuse and quality metrics i.e. Object-oriented quality metrics, reuse rates and performance measures of individual modules, fault-proneness of software components, and productivity rates of different products. Finally, by analyzing these measurements, we developed suggestions to further benefit from reuse in Aselsan through systematic improvements to the reuse infrastructure and process. Similar case studies have been reported in the literature, however, in Turkey, there are not many case studies using real-life project data, particularly in the defense industry.
BANSAL, ANKITA. "DEVELOPMENT OF TECHNIQUES AND MODELS FOR IMPROVING SOFTWARE QUALITY". Thesis, 2016. http://dspace.dtu.ac.in:8080/jspui/handle/repository/14692.
Pełny tekst źródłaBANSAL, ANJALI. "COMPARATIVE ANALYSIS OF CLASSIFICATION AND ENSEMBLE METHODS FOR PREDICTING SOFTWARE FAULT PRONENESS USING PROCESS METRICS". Thesis, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18929.
Pełny tekst źródłaJaafar, Fehmi. "Analysing artefacts dependencies to evolving software systems". Thèse, 2013. http://hdl.handle.net/1866/10514.
Pełny tekst źródłaProgram maintenance accounts for the largest part of the costs of any program. During maintenance activities, developers implement changes (sometimes simultaneously) on artefacts to fix bugs and to implement new requirements. Thus, developers need knowledge to identify hidden dependencies among programs artefacts and detect correlated artefacts. As programs evolved, their designs become more complex over time and harder to change. In the absence of the necessary knowledge on artefacts dependencies, developers could introduce design defects and faults that causes development and maintenance costs to rise. Therefore, developers must understand the dependencies among program artefacts and take proactive steps to facilitate future changes and minimize fault proneness. On the one hand, maintaining a program without understanding the different dependencies between their artefacts may lead to the introduction of faults. On the other hand, when developers lack knowledge about the impact of their maintenance activities, they may introduce design defects, which have a negative impact on program evolution. Thus, developers need mechanisms to understand how a change to an artefact will impact the rest of the programs artefacts and tools to detect design defects impact. In this thesis, we propose three principal contributions. The first contribution is two novel change patterns to model new co-change and change propagation scenarios. We introduce the Asynchrony change pattern, corresponding to macro co-changes, i.e., of files that co-change within a large time interval (change periods), and the Dephase change pattern, corresponding to dephase macro co-changes, i.e., macro co-changes that always happen with the same shifts in time. We present our approach, named Macocha, and we show that such new change patterns provide interesting information to developers. The second contribution is proposing a novel approach to analyse the evolution of different classes in object-oriented programs and to link different evolution behaviour to faults. In particular, we define an evolution model for each class to study the evolution and the co-evolution dependencies among classes and to relate such dependencies with fault-proneness. The third contribution concerns design defect dependencies impact. We propose a study to mine the link between design defect dependencies, such as co-change dependencies and static relationships, and fault proneness. We found that the negative impact of design defects propagate through their dependencies. The three contributions are evaluated on open-source programs.
Części książek na temat "SOFTWARE FAULT PRONENESS"
Singh, Yogesh, Arvinder Kaur i Ruchika Malhotra. "Predicting Software Fault Proneness Model Using Neural Network". W Lecture Notes in Business Information Processing, 215–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-68255-4_26.
Pełny tekst źródłaLuo, Yunfeng, Kerong Ben i Lei Mi. "Software Metrics Reduction for Fault-Proneness Prediction of Software Modules". W Lecture Notes in Computer Science, 432–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15672-4_36.
Pełny tekst źródłaOstrand, Thomas J., i Elaine J. Weyuker. "Can File Level Characteristics Help Identify System Level Fault-Proneness?" W Hardware and Software: Verification and Testing, 176–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34188-5_16.
Pełny tekst źródłaSharma, Pooja, i Amrit Lal Sangal. "Soft Computing Approaches to Investigate Software Fault Proneness in Agile Software Development Environment". W Algorithms for Intelligent Systems, 217–33. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3357-0_15.
Pełny tekst źródłaTakagi, Tomohiko, i Mutlu Beyazıt. "Optimized Test Case Generation Based on Operational Profiles with Fault-Proneness Information". W Software Engineering Research, Management and Applications, 15–25. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11265-7_2.
Pełny tekst źródłaDalal, Renu, Manju Khari i Dimple Chandra. "Evaluation of Software Fault Proneness with a Support Vector Machine and Biomedical Applications". W Bioelectronics and Medical Devices, 77–103. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003054405-4.
Pełny tekst źródłaSingh, Rajvir, Anita Singhrova i Rajesh Bhatia. "Optimized Test Case Generation for Object Oriented Systems Using Weka Open Source Software". W Research Anthology on Usage and Development of Open Source Software, 596–618. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-9158-1.ch032.
Pełny tekst źródłaMalhotra, LinRuchika, i Ankita Jain Bansal. "Prediction of Change-Prone Classes Using Machine Learning and Statistical Techniques". W Advanced Research and Trends in New Technologies, Software, Human-Computer Interaction, and Communicability, 193–202. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-4490-8.ch019.
Pełny tekst źródłaMala, D. Jeya. "Investigating the Effect of Sensitivity and Severity Analysis on Fault Proneness in Open Source Software". W Research Anthology on Recent Trends, Tools, and Implications of Computer Programming, 1743–69. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-3016-0.ch078.
Pełny tekst źródłaStreszczenia konferencji na temat "SOFTWARE FAULT PRONENESS"
Destefanis, Giuseppe, Roberto Tonelli, Ewan Tempero, Giulio Concas i Michele Marchesi. "Micro Pattern Fault-Proneness". W 2012 38th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA). IEEE, 2012. http://dx.doi.org/10.1109/seaa.2012.63.
Pełny tekst źródłaDenaro, Giovanni, Sandro Morasca i Mauro Pezzè. "Deriving models of software fault-proneness". W the 14th international conference. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/568760.568824.
Pełny tekst źródłaJaafar, Fehmi, Foutse Khomh, Yann-Gael Gueheneuc i Mohammad Zulkernine. "Anti-pattern Mutations and Fault-proneness". W 2014 14th International Conference on Quality Software (QSIC). IEEE, 2014. http://dx.doi.org/10.1109/qsic.2014.45.
Pełny tekst źródłaDenaro, Giovanni. "Estimating software fault-proneness for tuning testing activities". W the 22nd international conference. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/337180.337592.
Pełny tekst źródłaHamid, Bushra, Eisa bin Abdullah Aleissa i Abdul Rauf. "Anticipating Software Fault Proneness using Classifier Ensemble: An Optimize Approach". W Software Engineering. Calgary,AB,Canada: ACTAPRESS, 2012. http://dx.doi.org/10.2316/p.2012.780-021.
Pełny tekst źródłaAfzal, Wasif. "Using Faults-Slip-Through Metric as a Predictor of Fault-Proneness". W 2010 17th Asia Pacific Software Engineering Conference (APSEC). IEEE, 2010. http://dx.doi.org/10.1109/apsec.2010.54.
Pełny tekst źródłaHata, Hideaki, Osamu Mizuno i Tohru Kikuno. "Comparative Study of Fault-Proneness Filtering with PMD". W 2008 IEEE International Symposium on Software Reliability Engineering (ISSRE). IEEE, 2008. http://dx.doi.org/10.1109/issre.2008.49.
Pełny tekst źródłaSeliya, N., T. M. Khoshgoftaar i S. Zhong. "Analyzing software quality with limited fault-proneness defect data". W Ninth IEEE International Symposium on High-Assurance Systems Engineering. IEEE, 2005. http://dx.doi.org/10.1109/hase.2005.4.
Pełny tekst źródłaMorasca, Sandro, i Luigi Lavazza. "Slope-based fault-proneness thresholds for software engineering measures". W EASE '16: 20th International Conference on Evaluation and Assessment in Software Engineering. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2915970.2915997.
Pełny tekst źródłaLuo Yunfeng i Ben Kerong. "Metrics selection for fault-proneness prediction of software modules". W 2010 International Conference on Computer Design and Applications (ICCDA 2010). IEEE, 2010. http://dx.doi.org/10.1109/iccda.2010.5541206.
Pełny tekst źródła