Gotowa bibliografia na temat „Sodium Ion Conducting Materials”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Sodium Ion Conducting Materials”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Sodium Ion Conducting Materials"

1

Verma, Harshlata, Kuldeep Mishra i D. K. Rai. "Sodium ion conducting nanocomposite polymer electrolyte membrane for sodium ion batteries". Journal of Solid State Electrochemistry 24, nr 3 (8.01.2020): 521–32. http://dx.doi.org/10.1007/s10008-019-04490-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Herczog, Andrew. "Sodium Ion Conducting Glasses for the Sodium‐Sulfur Battery". Journal of The Electrochemical Society 132, nr 7 (1.07.1985): 1539–45. http://dx.doi.org/10.1149/1.2114161.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Wong, Lee Loong, Haomin Chen i Stefan Adams. "Design of fast ion conducting cathode materials for grid-scale sodium-ion batteries". Physical Chemistry Chemical Physics 19, nr 11 (2017): 7506–23. http://dx.doi.org/10.1039/c7cp00037e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Allu, Amarnath R., Sathravada Balaji, Kavya Illath, Chaithanya Hareendran, T. G. Ajithkumar, Kaushik Biswas i K. Annapurna. "Structural elucidation of NASICON (Na3Al2P3O12) based glass electrolyte materials: effective influence of boron and gallium". RSC Advances 8, nr 26 (2018): 14422–33. http://dx.doi.org/10.1039/c8ra01676c.

Pełny tekst źródła
Streszczenie:
Understanding the conductivity variations induced by compositional changes in sodium super ionic conducting (NASICON) glass materials is highly relevant for applications such as solid electrolytes for sodium (Na) ion batteries.
Style APA, Harvard, Vancouver, ISO itp.
5

Bloom, I., i M. C. Hash. "Ceramic/Glass Electrolytes for Sodium‐Ion‐Conducting Applications". Journal of The Electrochemical Society 139, nr 4 (1.04.1992): 1115–18. http://dx.doi.org/10.1149/1.2069349.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Nogai, A. A., Zh M. Salikhodzha, A. S. Nogai i D. E. Uskenbaev. "Conducting and dielectric properties of Na3Fe2(PO4)3 and Na2FePO4F". Eurasian Journal of Physics and Functional Materials 5, nr 3 (22.09.2021): 222–34. http://dx.doi.org/10.32523/ejpfm.2021050307.

Pełny tekst źródła
Streszczenie:
In this research, the structure parameters, conducting and dielectric properties of Na3Fe2(PO4)3 and Na2FePO4F polycrystals were studied obtained by solid-phase synthesis. The phase transition temperatures, conducting and dielectric parameters of Na3Fe2(PO4)3 and Na2FePO4F polycrystals were refined. A comparative evaluation of the conductive properties of Na3Fe2(PO4)3 and Na2FePO4F polycrystals is given in this article. The prospects of using of Na3Fe2(PO4)3 and Na2FePO4F are justified as electrode materials in sodium ion batteries.
Style APA, Harvard, Vancouver, ISO itp.
7

Menisha, Mithunaraj, M. A. K. L. Dissanayake i K. Vignarooban. "Quasi-Solid State Polymer Electrolytes Based on PVdF-HFP Host Polymer for Sodium-Ion Secondary Batteries". Key Engineering Materials 950 (31.07.2023): 99–104. http://dx.doi.org/10.4028/p-obe3dm.

Pełny tekst źródła
Streszczenie:
Prices of lithium raw materials keep on increasing exponentially due to their heavy consumption for lithium batteries used in portable electronic devices as well as automobiles. Also, the global lithium deposits are very limited. Hence, sodium-ion batteries (SIBs) have been heavily investigated as cheaper alternatives to expensive lithium-ion batteries, mainly due to the abundance of sodium raw materials. However, one of the major bottlenecks faced by the material research community to commercialize SIBs is the poor ionic conductivity of sodium-ion conducting electrolytes at ambient temperature, especially in the solid-state. Very recently, quasi-solid state polymer electrolytes (QSSPEs) have been proposed to overcome this challenge. In this work, a set of QSSPEs have been synthesized by using poly (vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) host polymer and NaBF4 ionic salt dissolved in EC/PC plasticizer/solvent mixture. The highest conducting composition; 6 PVdF-HFP: 14 NaBF4: 40 EC: 40 PC (wt.%); showed an ambient temperature ionic conductivity of 4.1x10-3 S cm-1. The activation energy is almost same for all the sample compositions studied in this work suggesting that the activation process is mainly controlled by EC/PC. DC polarization test on highest conducting electrolyte composition with a configuration of SS/QSSPE/SS revealed that the electrolyte is predominantly ionic conductor with negligible electronic conductivity; a much desired property for a good electrolyte. Linear sweep voltammetric studies confirmed that the electrochemical stability window of the highest conducting electrolyte is about 3.6 V. This highest conducting electrolyte composition is found to be highly suitable for practical applications in sodium batteries.
Style APA, Harvard, Vancouver, ISO itp.
8

Liu, Kewei, Yingying Xie, Zhenzhen Yang, Hong-Keun Kim, Trevor L. Dzwiniel, Jianzhong Yang, Hui Xiong i Chen Liao. "Design of a Single-Ion Conducting Polymer Electrolyte for Sodium-Ion Batteries". Journal of The Electrochemical Society 168, nr 12 (1.12.2021): 120543. http://dx.doi.org/10.1149/1945-7111/ac42f2.

Pełny tekst źródła
Streszczenie:
A sodium bis(fluoroallyl)malonato borate salt (NaBFMB) is synthesized. Using a Click thiol-ene reaction, NaBFMB can be photo-crosslinked with a tri-thiol (trimethylolpropane tris(3-mercapto propionate), TMPT) to create a single-ion conducting electrolyte (NaSIE), with all negative charges residing on the borate moieties and anions immobilized through the 3-D crosslinked network. The NaSIE can be prepared either as a free-standing film or through a drop-cast method followed by a photo crosslinking method for an in-situ formation on top of the electrodes. The free-standing film of NaSIE has a high ionic conductivity of 2 × 10−3 S cm−1 at 30 °C, and a high transference number (tNa +) of 0.91 as measured through the Bruce-Vincent method. The electrochemical stability of NaSIE polymer electrolyte is demonstrated via cyclic voltammetry (CV) to be stable up to 5 V vs Na/Na+. When tested inside a symmetrical Na//Na cell, the NaSIE shows a critical current density (CCD) of 0.4 mA cm−2. The stability of NaSIE is further demonstrated via a long cycling of the stripping/plating test with a current density of 0.1 mA cm−2 at five-minute intervals for over 10,000 min. Using the in-situ method, NaSIE is used as the electrolyte for a sodium metal battery using P2 (Na resides at prismatic sites with with ABBAAB stacking)-cathode of Na0.67Ni0.33Mn0.67O2 (NNMO) and is cycled between the cut-off voltages of 2.0–4.0 V. A high initial specific capacity (85.7 mAh g−1) with a capacity retention of 86.79% after 150 cycles is obtained.
Style APA, Harvard, Vancouver, ISO itp.
9

Irvine, J. T. S., i A. R. West. "Sodium ion-conducting solid electrolytes in the system Na3PO4Na2SO4". Journal of Solid State Chemistry 69, nr 1 (lipiec 1987): 126–34. http://dx.doi.org/10.1016/0022-4596(87)90018-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Vo, Duy Thanh, Hoang Nguyen Do, Thien Trung Nguyen, Thi Tuyet Hanh Nguyen, Van Man Tran, Shigeto Okada i My Loan Phung Le. "Sodium ion conducting gel polymer electrolyte using poly(vinylidene fluoride hexafluoropropylene)". Materials Science and Engineering: B 241 (luty 2019): 27–35. http://dx.doi.org/10.1016/j.mseb.2019.02.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Sodium Ion Conducting Materials"

1

Naqash, Sahir Verfasser], Olivier [Akademischer Betreuer] Guillon i Jochen M. [Akademischer Betreuer] [Schneider. "Sodium ion conducting ceramics for sodium ion batteries / Sahir Naqash ; Olivier Guillon, Jochen Michael Schneider". Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1190040611/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Naqash, Sahir [Verfasser], Olivier Akademischer Betreuer] Guillon i Jochen M. [Akademischer Betreuer] [Schneider. "Sodium ion conducting ceramics for sodium ion batteries / Sahir Naqash ; Olivier Guillon, Jochen Michael Schneider". Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://nbn-resolving.de/urn:nbn:de:101:1-2019070807164971884045.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

LONGONI, GIANLUCA. "Investigation of Sodium-ion Battery Materials". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/153278.

Pełny tekst źródła
Streszczenie:
La tecnologia delle batterie Sodio-ione ha negli ultimi tempi suscitato una crescente attenzione da parte della comunità scientifica mondiale grazie al fatto di poter rappresentare una valida alternativa alla tecnologia Litio-ione, più sostenibile dal punto di vista ambientale ed economico. Il lavoro di Dottorato è stato principalmente dedicato alla ricerca di materiali attivi per batterie Sodio ione. I materiali presi in considerazione, sia catodici che anodici, sono stati indagati ponendo particolare attenzione ai limiti e difficolta pratiche che gli stessi possono manifestare nei confronti dell'intercalazione di sodio. Tra questi sono stati considerati: i) la valutazione della diffusione di Na+ in una struttura host intercalante, ii) e prodotti, gli intermedi e la reversibilità di reazione di conversione di ossidi dei metalli di transizione, iii) gli effetti delle proprietà cristalline dei materiali sulle performance elettrochimiche e iv) le caratteristiche chimico-fisiche caratterizzanti la generale stabilità di un materiale funzionale per batterie. Durante il lavoro di tesi è stato perpetrato un continuo parallelismo tra le caratteristiche morfologiche e strutturali e le performance elettrochimiche, ottenendo infine una dettagliata visione di molteplici classi di materiali attivi per sodio-ione. Ciò ha reso necessario un approccio inter-disciplinare in cui ad avanzate tecniche analitiche di tipo elettrochimico, è stato affiancato un approccio più specificatamente ingegneristico dei materiali stessi, al fine di evidenziare le correlazione proprietà-struttura. Tra le classi di materiali attivi investigate un ruolo di primaria importanza è stato riservato a materiali ad intercalazione catodici e materiali a conversione basati su ossidi di metalli di transizione. I primi, tipicamente materiali con struttura cristallina lamellare di natura ossidica, o a base di fosfati e pirofosfati, promuovono l’intercalazione di sodio con cinetiche veloci e con molteplici geometrie e pattern assunti dai cationi intercalati. I materiali a conversione invece permettono di ottenere lo stoccaggio energetico tramite reazione chimiche spontanee che avvengono tra materiale attivo e lo ione sodio. Paragonati a materiali ad intercalazione, i materiali a conversione presentano molteplici problematiche, tra cui: i) la variazione di volume considerevole che accompagna la reazione di conversione che introduce stress meccanici considerevoli e porta alle tipiche frammentazioni d’elettrodo e ii) processi irreversibili che solitamente corredano la reazione di conversione. Un aspetto che rende tali materiali meritevoli di essere studiati è la loro capacità di stoccare elevate quantità di sodio rendendoli capaci di capacità specifiche teoriche straordinarie (> 800 mAh/g). Tutti questi aspetti sono stati affrontati e tenuti in profonda considerazione al fine di mettere a punto un materiali a conversione anodica nano-strutturato a base di Co3O4 che rappresentasse una valida soluzione al problema di perfezionamento delle batterie sodio-ione. Assieme a materiali anodici, è stato altresì condotto lo studio di materiali catodici caratterizzati da elevate performance ma bassi costi di sintesi. Lo studio preliminare del composito ad intercalazione Na2FeP2O7/MWCNT a condotto ad interessanti risultati legati ad estremamente veloci cinetiche di diffusione di sodio all’interno del network di canali del materiale e ad una generale stabilità durante la ciclazione. All’anatasio (TiO2) nano-crystallino sintetizzato ad-hoc è stata dedicata l’ultima parte del lavoro di ricerca. Tale lavoro ha permesso di confermare importanti correlazioni tra le caratteristiche cristalline superficiali dei nano-cristalli e i meccanismi di interazione con sodio attraverso meccanismi pseudocapacitivi; e significativi avanzamenti sono stati ottenuti nella definizione di tale meccanismo e nella messa a punto di un efficiente materiale anodico a basso costo.
Na-ion battery technology has recently aroused great interest among all the scientific community, as a valid and more environmentally friendly alternative to Li-ion batteries. The PhD research activity has been mostly devoted to the investigation of reliable active materials for sodium ion battery technology. All the investigated materials, either anode or cathode, have been investigated trying to highlight the major limits and difficulties connected to sodium intercalation and conversion reactions. Among these, some are: i)assessment of Na diffusion in an intercalating host structure, ii)products and reversibility of transition metal oxides conversion reactions, iii) effects of materials crystalline properties on electrochemical performances and iv) features influencing the overall stability of a functional material. In order to keep the most broad-based overview of the problem, it has been chosen to systematically start, for each species electrochemically investigated, from its synthesis and thorough chemical-physical characterization. Rather than a pure electrochemical analysis, a continuous parallelism between morphological features, structural characteristics and performances was encouraged, eventually obtaining a detailed overlook of different classes of active materials for sodium batteries. What has been screened all along the three year-long research period has been a comprehensive investigation of new generation electrochemically active materials for energy storage applications. This implied an inter-disciplinary work in which advanced electro-analytical techniques have been widely used to characterize inorganic compounds or ad-hoc synthesized composites keeping in mind precise structure-performance correlations. Among the investigated classes, a role of relevance has been reserved to intercalating cathode species and conversion anode materials. The former, typically layered transition metal oxides, phosphates and pyrophosphates, are capable of sodium cations insertion, with fast kinetics, between layers or inside channels generated from peculiar atoms arrangement. Conversion anode materials on the other hand, carries out the sodium storage via spontaneous chemical reactions with oxide-based material, such as Co3O4 or Fe2O3, a chalcogenide or a halide. Compared to intercalation materials, conversion ones are more challenging to deal with, due to the following difficulties: i)their not negligible volume change during conversion reaction and the correlated induced mechanical stresses leading to electrode fracturing and pulverization, ii)occurrence of irreversible and parasitic reactions and iii)material operating potentials is often too high (around 1.0 V vs. Na/Na+) and thus not suitable for being used as anode materials inside a sodium cell. A positive feature that makes these material worthy to be studied is the high sodium uptake they are able to bare, bestowing them high theoretical specific capacities (>800 mAh∙g-1). All these aspects have been tackled in designing a conversion anode that might constitute a valid solution toward a sodium secondary battery whole-cell assembly. Together with anode materials also a high-performing and low-cost cathode material has been investigated. The exploratory study of pyrophosphate-MWCNT composite intercalation material led to interesting results referred to fast kinetics and material reliability throughout the cycles. To TiO2 nanocrystals synthesis and crystalline appearance-electrochemical properties correlation has beeb dedicated an exhaustive analysis which allowed to achieve significative advancements in defining the sodium uptake mechanism for pseudo-capacitive oxide-based anode material for sodium-ion batteries.
Style APA, Harvard, Vancouver, ISO itp.
4

Campbell, A. G. "Electrical processes at metallic contacts to sodium ion conducting glass". Thesis, University of Edinburgh, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378729.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Nwafornso, Tochukwu. "Bismuth anode for sodium-ion batteries". Thesis, Uppsala universitet, Strukturkemi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-449075.

Pełny tekst źródła
Streszczenie:
It is imperative to develop alternative battery technologies based on naturally abundant elements, with competitive performance as lithium-ion batteries. Sodium has a natural abundance 1000 times more than lithium with both lithium and sodium-ion batteries having similar chemistry. Sodium-ion batteries are potentially an alternative that can achieve such competitive performance, given that electrode and electrolyte materials of high rate and long-term electrochemical performance are being developed. This thesis investigates the rate capability and long-term performance of bulk bismuth electrodes containing varying carbon content. The electrodes were cycled in cells with glyme-based electrolytes: diglyme and tetraglyme. Scanning electron microscopy and energy dispersive spectroscopy showed the morphology and elemental mapping of pristine and cycled bismuth electrodes. The result demonstrates the evolving porosity as the electrode cycled. The galvanostatic cycling of half-cells showed two plateaus each for sodiation and desodiation. Also, two peaks are seen in cyclic voltammetry suggesting a two-phase reaction. When cycled between -0.6 to 0.6 V in a symmetrical cell, the bismuth electrode showed an appreciable rate capability at a current rate of 770  mA/g in diglyme. In tetraglyme, it showed a poor rate capability, even at a current rate of 308 mA/g. The rate performance in a full cell cycled between 0.1 to 3.2 V also showed a good rate capability at a current rate of 770  mA/g in diglyme. Tetraglyme showed poor rate capability at the same current rate. The capacity retention was higher in the symmetrical cells, with 79 % and 78 % capacity retention relative to the initial charge capacity after 100 cycles for diglyme and tetraglyme. At the same current rate and more than 70 cycles, the full cells showed capacity retention of 58 % in diglyme and 44.8 % in tetraglyme. The capacity retention varied slightly for the two different electrode composites.  The superior performance in the symmetrical cell is due to the narrow voltage window.  Evaluating the stability of the solid electrolyte interphase via galvanostatic cycling suggests some stability issues. The full cells showed growing resistance with an increasing number of cycles.
Style APA, Harvard, Vancouver, ISO itp.
6

Simpson, Michael Alan. "Synthesis and characterisation of potential ion conducting materials incorporating crown ethers". Thesis, Heriot-Watt University, 1997. http://hdl.handle.net/10399/690.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Toumar, Alexandra Jeanne. "Phase transformations in layered electrode materials for sodium ion batteries". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111255.

Pełny tekst źródła
Streszczenie:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2017.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 118-130).
In this thesis, I investigate sodium ion intercalation in layered electrode materials for sodium ion batteries. Layered metal oxides have been at the forefront of rechargeable lithium ion battery technology for decades, and are currently the state of the art materials for sodium ion battery cathodes in line for commercialization. Sodium ion intercalated layered oxides exist in several different host phases depending on sodium content and temperature at synthesis. Unlike their lithium ion counterparts, seven first row layered TM oxides can intercalate Na ions reversibly. Their voltage curves indicate significant and numerous reversible phase transformations during electrochemical cycling. These transformations arise from Na-ion vacancy ordering and metal oxide slab glide but are not well understood and difficult to characterize experimentally. In this thesis, I explain the nature of these lattice differences and phase transformations for O and P-type single-transition-metal layered systems with regards to the active ion and transition metal at hand. This thesis first investigates the nature of vacancy ordering within the O3 host lattice framework, which is currently the most widely synthesized framework for sodium ion intercalating oxides. I generate predicted electrochemical voltage curves for each of the Na-ion intercalating layered TM oxides using a high-throughput framework of density functional theory (DFT) calculations and determine a set of vacancy ordered phases appearing as ground states in all NaxMO₂ systems, and investigate the energy effect of stacking of adjacent layers. I also examine the influence of transition metal mixing and transition metal migration on the materials' thermodynamic properties. Recent work has established the P2 framework as a better electrode candidate structure type than O3, because its slightly larger interlayer spacing allows for faster sodium ion diffusion due to lower diffusion barriers. However, little has been resolved in explaining what stabilizing mechanisms allow for the formation of P-type materials and their synthesis. This work therefore also investigates what stabilizes P2, P3 and O3 materials and what makes them synthesizable at given synthesis conditions, both for the optimization of synthesis techniques and for better-guided material design. It is of further interest to understand why some transition metal oxide systems readily form P2 or P3 compounds while others do not. I investigate several possible stabilizing mechanisms that allow P-type layered sodium metal oxides to by synthesized, and relate these to the choice of transition metal in the metal oxide structure. Finally, this work examines the difficulty of sodium ion intercalation into graphite, which is a commonly used anode material for lithium ion batteries, proposing possible reasons for why graphite does not reversibly intercalate sodium ions and why cointercalation with other compounds is unlikely. This thesis concludes that complex stabilizing mechanisms that go beyond simple electrostatics govern the intercalation of sodium ions into layered systems, giving it advantages and disadvantages over lithium ion batteries and outlining design principles to improve full-cell sodium ion battery materials.
by Alexandra Jeanne Toumar.
Ph. D.
Style APA, Harvard, Vancouver, ISO itp.
8

Li, Xianji. "Metal nitrides as negative electrode materials for sodium-ion batteries". Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/374787/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Zhang, Ketian. "Mixed ion and electron conducting polymer composite membranes for artificial photosynthesis". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121607.

Pełny tekst źródła
Streszczenie:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2019
Cataloged from PDF version of thesis.
Includes bibliographical references.
Inspired by the fact that OH- has a very high mobility in water, highly conductive OH⁻conducting membranes were developed for alkaline water electrolysis. The membranes were semi-interpenetrating networks of crosslinked poly(vinyl alcohol) (PVA) and a polycation miscible with PVA. It is analogous to aqueous strong base solution. The polycation is a OH- containing polymer; PVA solvates this polycation and facilitates the ion conduction via Grotthuss mechanism. The membrane with proper composition has an exceptionally high OH⁻ conductivity of 151 mS/cm, 6.51 times as high as the commercial membrane Neosepta AHA. At the same time, the hydrogen bonds and covalent crosslinks in the system give this membrane a high tensile strength of 41 MPa in the wet state, 46% higher than the Neosepta AHA membrane. Insight in the ion conduction mechanism was gained by spectroscopic studies and the measurement of OH- conduction activation energy.
This material system is also highly anion perm-selective, a feature critical to sustaining the pH gradient in bipolar membrane based artificial photosynthesis devices. A highly transparent mixed proton and electron conducting membrane was developed. The Nafion and reduced graphene oxide (rGO) were chosen as the proton conducting polymer matrix and the electrically conductive filler respectively. The filler has a high aspect ratio. As predicted by simulations, it will have low percolation threshold if homogeneously dispersed. To achieve this homogeneity, water-aided mixing was employed followed by fast freezing in liquid nitrogen. Though rGO is a light absorber, the extremely low percolation threshold (0.1%) allows us to achieve sufficient electrical conductivity with only a small volume fraction of rGO. Therefore, the membrane was highly transparent in addition to its ability to conduct both electrons and protons.
Detailed modeling of the energy loss from conduction, light absorption, and gas crossover was conducted, showing that this material system is promising for the artificial photosynthesis application.
by Ketian Zhang.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Materials Science and Engineering
Style APA, Harvard, Vancouver, ISO itp.
10

Yue, Zhilian. "Synthesis of thermotropic cellulose derivatives and their behaviour as ion conducting materials". Thesis, Heriot-Watt University, 2002. http://hdl.handle.net/10399/492.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Sodium Ion Conducting Materials"

1

Zhang, Lei, i Ranjusha Rajagopalan. Advanced Materials for Sodium Ion Storage. Taylor & Francis Group, 2019.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Zhang, Lei, i Ranjusha Rajagopalan. Advanced Materials for Sodium Ion Storage. Taylor & Francis Group, 2019.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Zhang, Lei, i Ranjusha Rajagopalan. Advanced Materials for Sodium Ion Storage. Taylor & Francis Group, 2019.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Zhang, Lei, i Ranjusha Rajagopalan. Advanced Materials for Sodium Ion Storage. Taylor & Francis Group, 2019.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Advanced Materials for Sodium Ion Storage. Taylor & Francis Group, 2019.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

(Editor), A. R. Kulkarni, i P. Gopalan (Editor), red. Ion Conducting Materials: Theory and Applications. Alpha Science International, Ltd, 2001.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Titirici, Maria-Magdalena, Philipp Adelhelm i Yong Sheng Hu. Sodium-Ion Batteries: Materials, Characterization, and Technology. Wiley & Sons, Incorporated, John, 2022.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Zou, Guoqiang, i Xiaobo Ji. Sodium Ion Capacitors - Mechanisms, Materials and Technologies. Wiley & Sons, Limited, John, 2023.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Sodium-Ion Batteries: Materials, Characterization, and Technology. Wiley & Sons, Limited, John, 2021.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Titirici, Maria-Magdalena, Philipp Adelhelm i Yong Sheng Hu. Sodium-Ion Batteries: Materials, Characterization, and Technology. Wiley & Sons, Incorporated, John, 2022.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Sodium Ion Conducting Materials"

1

Gordon, R. S. "Sodium Ion Conducting Glasses". W Inorganic Reactions and Methods, 211–12. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch144.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Fragal, Vanessa H., Elizângela H. Fragal, Antônia M. O. Lima, Maria N. Queiroz, Otavio A. Silva, Leila Cottet, Thiago Sequinel i in. "Sodium-Ion-Based Hybrid Devices". W Handbook of Energy Materials, 1–29. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4480-1_26-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Rost, A., J. Schilm, M. Kusnezoff i A. Michaelis. "Li-Ion Conducting Solid Electrolytes". W Ceramic Materials for Energy Applications III, 25–32. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118807934.ch3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Rajagopalan, Ranjusha, i Lei Zhang. "Introduction for Sodium Ion Batteries". W Advanced Materials for Sodium Ion Storage, 1–6. New York, NY : CRC Press/Taylor & Francis Group, 2020. |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429423772-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ishihara, Tatsumi. "Oxide Ion-Conducting Materials for Electrolytes". W Materials for High-Temperature Fuel Cells, 97–132. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527644261.ch3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Guo, Xin, Shijian Wang, Hong Gao, Rui Zang, Xiaogang Zhang, Jian Yang, Chengyin Wang i Guoxiu Wang. "Cathode Materials for Sodium-Ion Batteries". W Handbook of Sodium-Ion Batteries, 63–181. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Hou, Hongshuai, Hongshuai Hou, Xiaobo Ji i Xiaobo Ji. "Carbon Anode Materials for Sodium-Ion Batteries". W Advanced Battery Materials, 1–86. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119407713.ch1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Rajagopalan, Ranjusha, i Lei Zhang. "Anode Materials for Sodium Ion Batteries". W Advanced Materials for Sodium Ion Storage, 23–82. New York, NY : CRC Press/Taylor & Francis Group, 2020. |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429423772-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Rajagopalan, Ranjusha, i Lei Zhang. "Cathode Materials for Sodium Ion Batteries". W Advanced Materials for Sodium Ion Storage, 83–129. New York, NY : CRC Press/Taylor & Francis Group, 2020. |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429423772-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Balkanski, M., R. F. Wallis, J. Deppe i M. Massot. "Dynamical Properties of Fast Ion Conducting Borate Glasses". W Solid State Materials, 53–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-09935-3_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Sodium Ion Conducting Materials"

1

Abidin, Siti Zafirah Zainal, Nor Kartini Jaafar, S. R. A. Manap, Shanti Navaratnam, Ainnur Izzati Kamisan, Nazli Ahmad Aini i Rosnah Zakaria. "Sodium ion conducting biopolymers electrolyte based on potato starch-chitosan blend". W ADVANCES IN MATERIAL SCIENCE AND MANUFACTURING ENGINEERING. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0116424.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Harshlata, Kuldeep Mishra i D. K. Rai. "Electro-chemical studies on sodium ion conducting gel polymer electrolyte of PVdF-HFP+NaPF6". W NATIONAL CONFERENCE ON ADVANCED MATERIALS AND NANOTECHNOLOGY - 2018: AMN-2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5052110.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Abiddin, Jamal Farghali Bin Zainal, i Azizah Hanom Ahmad. "Conductivity study and fourier transform infrared (FTIR) characterization of methyl cellulose solid polymer electrolyte with sodium iodide conducting ion". W ADVANCED MATERIALS AND RADIATION PHYSICS (AMRP-2015): 4th National Conference on Advanced Materials and Radiation Physics. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4928844.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Hashmi, S. A., H. M. Upadhyaya i Awalendra K. Thakur. "SODIUM ION CONDUCTING COMPOSITE POLYMER ELECTROLYTES FOR BATTERY APPLICATIONS". W Proceedings of the 7th Asian Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812791979_0072.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

SANTA ANA, M. A., E. BENAVENTE i G. GONZÁLEZ. "LAYERED ION-ELECTRON CONDUCTING MATERIALS". W Proceedings of the 10th Asian Conference. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773104_0033.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Harshlata, Kuldeep Mishra i D. K. Rai. "Sodium ion conducting polymer electrolyte membrane prepared by phase inversion technique". W DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5029181.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kendrick, Emma, Tengfei Song, Lin Chen i Brij Kishore. "A sustainable sodium ion battery materials life-cycle". W Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.240.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Bhatt, Chandni, Ram Swaroop, Parul Kumar Sharma i A. L. Sharma. "Sodium-ion-conducting polymer nanocomposite electrolyte of TiO2/PEO/PAN complexed with NaPF6". W INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946397.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Adelhelm, Philipp. "Inorganic Electrodes for Sodium-ion and Solid-state Batteries". W Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.226.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Chowdari, B. V. R., Qingguo Liu i Liquan Chen. "Recent Advances in Fast Ion Conducting Materials and Devices". W 2nd Asian Conference on Solid State Ionics. WORLD SCIENTIFIC, 1990. http://dx.doi.org/10.1142/9789814540186.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Sodium Ion Conducting Materials"

1

Gao, Yue, Guoxing Li, Pei Shi i Linh Le. Multifunctional Li-ion Conducting Interfacial Materials for Lithium Metal Batteries”. Office of Scientific and Technical Information (OSTI), grudzień 2021. http://dx.doi.org/10.2172/1839857.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Angell, C. A. Amorphous Fast Ion Conducting Systems, Part 1. Structure and Properties of Mid and Far IR Transmitting Materials, Part 2. Fort Belvoir, VA: Defense Technical Information Center, październik 1991. http://dx.doi.org/10.21236/ada253678.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii