Gotowa bibliografia na temat „Sodium Ion Cells”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Sodium Ion Cells”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Sodium Ion Cells"
Ban, Yue, Benjamin E. Smith i Michael R. Markham. "A highly polarized excitable cell separates sodium channels from sodium-activated potassium channels by more than a millimeter". Journal of Neurophysiology 114, nr 1 (lipiec 2015): 520–30. http://dx.doi.org/10.1152/jn.00475.2014.
Pełny tekst źródłaLi, Xianji, Andrew L. Hector, John R. Owen i S. Imran U. Shah. "Evaluation of nanocrystalline Sn3N4derived from ammonolysis of Sn(NEt2)4as a negative electrode material for Li-ion and Na-ion batteries". Journal of Materials Chemistry A 4, nr 14 (2016): 5081–87. http://dx.doi.org/10.1039/c5ta08287k.
Pełny tekst źródłaSabzpoushan, S. H., i A. Faghani Ghodrat. "Role of Sodium Channel on Cardiac Action Potential". Engineering, Technology & Applied Science Research 2, nr 3 (4.06.2012): 232–36. http://dx.doi.org/10.48084/etasr.174.
Pełny tekst źródłaNiu, Yu‐Bin, Ya‐Xia Yin i Yu‐Guo Guo. "Nonaqueous Sodium‐Ion Full Cells: Status, Strategies, and Prospects". Small 15, nr 32 (25.03.2019): 1900233. http://dx.doi.org/10.1002/smll.201900233.
Pełny tekst źródłaStanton, B. A., i B. Kaissling. "Regulation of renal ion transport and cell growth by sodium". American Journal of Physiology-Renal Physiology 257, nr 1 (1.07.1989): F1—F10. http://dx.doi.org/10.1152/ajprenal.1989.257.1.f1.
Pełny tekst źródłaKarasawa, Akira, Haijiao Liu, Matthias Quick, Wayne A. Hendrickson i Qun Liu. "Crystallographic Characterization of Sodium Ions in a Bacterial Leucine/Sodium Symporter". Crystals 13, nr 2 (20.01.2023): 183. http://dx.doi.org/10.3390/cryst13020183.
Pełny tekst źródłaBerkowitz, L. R., i E. P. Orringer. "Passive sodium and potassium movements in sickle erythrocytes". American Journal of Physiology-Cell Physiology 249, nr 3 (1.09.1985): C208—C214. http://dx.doi.org/10.1152/ajpcell.1985.249.3.c208.
Pełny tekst źródłaPeters, Jens, Alexandra Peña Cruz i Marcel Weil. "Exploring the Economic Potential of Sodium-Ion Batteries". Batteries 5, nr 1 (16.01.2019): 10. http://dx.doi.org/10.3390/batteries5010010.
Pełny tekst źródłaCragg, Peter J. "Artificial Transmembrane Channels for Sodium and Potassium". Science Progress 85, nr 3 (sierpień 2002): 219–41. http://dx.doi.org/10.3184/003685002783238780.
Pełny tekst źródłaVan Mil, H. G. J. "Analysis of a Model Describing the Dynamics of Intracellular Ion Composition in Biological Cells". International Journal of Bifurcation and Chaos 08, nr 05 (maj 1998): 1043–47. http://dx.doi.org/10.1142/s0218127498000851.
Pełny tekst źródłaRozprawy doktorskie na temat "Sodium Ion Cells"
Sculptoreanu, Adrian Carleton University Dissertation Biology. "Intracellular concentration and membrane permeability ratio of sodium and potassium ion in cultured cardiomyocytes of the adult rat". Ottawa, 1988.
Znajdź pełny tekst źródłaXaba, Nqobile. "Development of Anode Materials Using Electrochemical Atomic Layer Deposition (E-ALD) for Energy Applications". University of the Western Cape, 2018. http://hdl.handle.net/11394/6390.
Pełny tekst źródłaNanomaterials have been found to undeniably possess superior properties than bulk structures across many fields of study including natural science, medicine, materials science, electronics etc. The study of nano-sized structures has the ability to address the current world crisis in energy demand and climate change. The development of materials that have various applications will allow for quick and cost effective solutions. Nanomaterials of Sn and Bi are the core of the electronic industry for their use in micro packaging components. These nanomaterials are also used as electrocatalysts in fuel cells and carbon dioxide conversion, and as electrodes for rechargeable sodium ion batteries. There are various methods used to make these nanostructures including solid state methods, hydrothermal methods, sputtering, and vacuum deposition techniques. These methods lack the ability to control the structure of material at an atomic level to fine tune the properties of the final product. This study aims to use E-ALD technique to synthesis thin films of Sn and Bi for various energy applications, and reports the use of E-ALD in battery applications for the first time. Thin films were synthesised by developing a deposition sequence and optimising this deposition sequence by varying deposition parameters. These parameters include deposition potential, and concentration of precursor solution. The thin films were characterised using cyclic voltammetry, linear sweep voltammetry, chronoamperometry for electrochemical activity. These were also characterised using scanning electron microscope for morphology, x-ray diffraction for crystal phases, energy dispersive spectroscopy for elemental mapping, and focused ion beam scanning electron microscope for thickness. The elemental content was analysed using electron probe micro analysis and inductively coupled plasma mass spectrometry. The electrochemical impedance charge and discharge profile were used for electrochemical battery tests.
Jenkins, Richard J. "The mechanisms whereby the sodium, potassium-ATPhase undergoes adaptive changes in human lymphocytes in response to lithium". Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236273.
Pełny tekst źródłaPayne, Geoffrey. "NMR studies on the local distributions of sodium ions in living systems". Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329930.
Pełny tekst źródłaTesfamhret, Yonas. "Sb/C composite anode for sodium-ionbatteries". Thesis, Uppsala universitet, Strukturkemi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-325794.
Pełny tekst źródłaScharlau, Daniel. "Dynamics of the Sodium-D-Glucose co-transporter SGLT1 in mammalian cell lines". [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=975770322.
Pełny tekst źródłaSgarbi, Stabellini Francesca. "Synthesis and surface characterization of metal (Mn, Ti) hexacyanoferrate electrodes". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24378/.
Pełny tekst źródłaCampbell, Thomas. "The role of voltage-gated sodium channels in non-small cell lung cancer". Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/the-role-of-voltagegated-sodium-channels-in-nonsmall-cell-lung-cancer(a65f4c5e-b217-483b-91d3-bb669965eb03).html.
Pełny tekst źródłaImpheng, Hathaichanok. "Expression Fonctionnelle du canal sodique de fuite NALCN en système recombinant". Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTT051.
Pełny tekst źródłaElectrical activity of excitable cells involves a coordinated and tightly regulated action of a panel of specialized proteins including ion channels, transporters, exchangers, and receptors for hormones and neurotransmitters. Any alteration in the function of one component of this « Excitosome » induces a pathological state that may be not only severe but also letal in human. The thesis project focused on the functional expression of the sodium leak channel NALCN. NALCN regulates the resting membrane potential and subsequently the electrical activity of several cell types including neurons and endocrine/neuroendocrine cells. The study of animal models revealed that NALCN is involved in major physiological functions such as respiration, circadian rhythm, locomotor activity and nociception. Mutations were recently described in patients with severe neurodevelopmental disorders refered to as IHPRF1 (Hypotonia, Infantile, with Psychomotor Retardation and Characteristic Facies 1 ; OMIM #615419) and CLIFAHDD (Congenital contractures of the limbs and face, hypotonia, and developmental delay ; OMIM #616266). These diseases are characterized by a large panel of symptoms that includes an early death. The effects of these mutations on the NALCN current were not known because of the lack of a suitable cell model to functionally express NALCN. A such cell model was also required in order to identify molecules of therapeutical interest. In this context, the first part of the thesis work led to the identification of the neuronal NG108-15 cell line as suitable to functionally express NALCN (Bouasse, Impheng et al, 2019, Sci Rep). This cell line endogenously express two known subunits of NALCN referred to as UNC-79 and UNC-80. A NALCN current was recorded after transfection of the cells with NALCN and another subunit referred to as NLF-1. The NALCN current exhibited unexpected and undescribed biophysical properties with a voltage-dependence and inactivation kinetics. This work also led to the discovery that CLIFAHDD and IHPRF1 mutations are gain- and loss-of-function repectively. In addition, this study showed that CLIFAHDD mutants exhibited altered inactivation kinetics. In a second part of the thesis, the pituitary GH3 cell line was dentified as relevant for NALCN expression (Impheng et al, FASEB J, in revision). This cell line endogenously expressed the whole NALCN channelosome. A combination of lentiviral mediated-knockdown and overexpression approaches followed by electrophysiological recordings showed that NALCN is functional in GH3 cells and is a crucial player of excitability of this cell types. This study revealed that, in addition to neurons, NALCN regulates pituitary cell excitability and provided a cell model to study NALCN in a pituitary environment. The third part of the work allowed to setup a third cell model. Indeed, transient expression of the whole NALCN channelosome in HEK-293 cells allowed for a robust expression of the NALCN current. This system was used to compare some properties of the human NALCN with the T. adhaerens counterpart. A a whole, this thesis work resulted in the identification of three cellular models to functionally express NALCN. This led to identify the impact of pathogenic variants on NALCN function as well as to reveal novel biophysical properties of the NALCN current. This study paved the way to the identification the discovery of molecules that specifically modulate NALCN with a therapeutic potential
Šátek, Dominik. "Teplotní závislost kapacity negativní elektrody pro sodno – iontové akumulátory". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442527.
Pełny tekst źródłaKsiążki na temat "Sodium Ion Cells"
S, Aronson Peter, red. Na⁺-H⁺ exchange, intracellular pH, and cell function. Orlando: Academic Press, 1986.
Znajdź pełny tekst źródła1950-, Karmazyn M., Avkiran M i Fliegel Larry 1956-, red. The sodium-hydrogen exchanger: From molecule to its role in disease. Boston: Kluwer Academic Publishers, 2003.
Znajdź pełny tekst źródłaIan, Glynn, Ellory J. C i Company of Biologists, red. The sodium pump: Proceedings of the Fourth International Conference on Na, K-ATPase, held at the Physiological Laboratory, Cambridge, in August 1984. Cambridge, U.K: Company of Biologists, 1985.
Znajdź pełny tekst źródłaE, Vance Dennis, i Vance Jean E, red. Biochemistry of lipids, lipoproteins, and membranes. Amsterdam: Elsevier, 1991.
Znajdź pełny tekst źródłaAdragna, Norma, i Peter Lauf. Cell Volume and Signaling. Springer, 2014.
Znajdź pełny tekst źródłaCell Volume and Signaling (Advances in Experimental Medicine and Biology). Springer, 2005.
Znajdź pełny tekst źródłaEgan, Brian N. Hyponatremia/Hypernatremia. Redaktorzy Matthew D. McEvoy i Cory M. Furse. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190226459.003.0037.
Pełny tekst źródłaRich, Mark M. Critical Illness Neuropathy, Myopathy, and Sodium Channelopathy. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199653461.003.0033.
Pełny tekst źródłaNa+-H+ exchange, intracellular pH, and cell function. Orlando: Academic Press, 1986.
Znajdź pełny tekst źródła(Editor), Morris Karmazyn, Metin Avkiran (Editor) i Larry Fliegel (Editor), red. The Sodium-Hydrogen Exchanger: From Molecule to its Role in Disease. Springer, 2003.
Znajdź pełny tekst źródłaCzęści książek na temat "Sodium Ion Cells"
Fozzard, H. A. "Cytosolic Sodium Ion Activity in Heart Cells". W Developments in Cardiovascular Medicine, 84–97. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2621-2_6.
Pełny tekst źródłaHustad, Kristian Gregorius, Ena Ivanovic, Adrian Llop Recha i Abinaya Abbi Sakthivel. "Conduction Velocity in Cardiac Tissue as Function of Ion Channel Conductance and Distribution". W Computational Physiology, 41–50. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05164-7_4.
Pełny tekst źródłaHofmann, J., A. K. Wurba, B. Bold, S. Maliha, P. Schollmeyer, J. Fleischer, J. Klemens, P. Scharfer i W. Schabel. "Investigation of Parameters Influencing the Producibility of Anodes for Sodium-Ion Battery Cells". W Lecture Notes in Production Engineering, 171–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-62138-7_18.
Pełny tekst źródłaBenos, Dale J. "Amiloride-Sensitive Epithelial Sodium Channels". W Ionic Channels in Cells and Model Systems, 401–20. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5077-4_26.
Pełny tekst źródłaClausen, Michael Jakob Voldsgaard, i Hanne Poulsen. "Sodium/Potassium Homeostasis in the Cell". W Metal Ions in Life Sciences, 41–67. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5561-1_3.
Pełny tekst źródłaPowell, Trevor. "Single Cells and Rapid Inward Sodium Current". W Advances in Myocardiology, 273–78. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4757-1287-2_21.
Pełny tekst źródłaGupta, Raj K. "NMR Spectroscopy of Intracellular Sodium Ions in Living Cells". W NMR in Living Systems, 291–308. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4580-7_19.
Pełny tekst źródłaJaimovich, Enrique. "The Use of Specific Ligands to Study Sodium Channels in Muscle". W Ionic Channels in Cells and Model Systems, 89–100. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5077-4_6.
Pełny tekst źródłaVenugopal, Gopikrishnan, Manigundan Kaari, Abirami Baskaran i Radhakrishnan Manikkam. "Immobilization of Actinobacterial Cells: Sodium Alginate and Calcium Chloride Method". W Methods in Actinobacteriology, 491–94. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-1728-1_73.
Pełny tekst źródłaSchmider, F. X., E. Fossat, G. Grec i B. Gelly. "Sodium cell spectrophotometer for detection of stellar oscillations". W Advances in Helio- and Asteroseismology, 513–16. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-4009-3_99.
Pełny tekst źródłaStreszczenia konferencji na temat "Sodium Ion Cells"
Vincent, Timothy A., Ivana Hasa, Begum Gulsoy, Jonathan E. H. Sansom i James Marco. "Battery Cell Temperature Sensing Towards Smart Sodium-Ion Cells for Energy Storage Applications". W 2022 IEEE 16th International Conference on Compatibility, Power Electronics, and Power Engineering (CPE-POWERENG). IEEE, 2022. http://dx.doi.org/10.1109/cpe-powereng54966.2022.9880876.
Pełny tekst źródłaKim, Kyu-Jung, George Miley, Nie Luo i Ankeeth Ved. "System Integration Issues for a Direct Sodium Borohydride Fuel Cell (DNBFC)". W ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85178.
Pełny tekst źródłaOlsen, Shawn, i Jiro Nagatomi. "An Optical Approach for Studying the Cellular Mechanotransduction of Hydrostatic Pressure by Bladder Urothelial Cells". W ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53872.
Pełny tekst źródłaFandakov, Alexander, Paul Tourlonias, Alexander Herzog, Emre Özkan, Ronny Kurt Mehnert i Marc Sens. "Model-Based Energy Consumption Optimization of a Twin Battery Concept Combining Liquid and Solid-State Electrolyte Cells". W 16th International Conference on Engines & Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-24-0154.
Pełny tekst źródłaSundaresan, Vishnu Baba, i Donald J. Leo. "Modeling and Characterization of a Chemomechanical Actuator Based on Protein Transporters". W ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43712.
Pełny tekst źródłaSakai, T., K. Okada, H. Bando, S. Ueshima, N. Tanaka i O. Matsuo. "ANALYSIS OF THE SECRETION MECHANISM OF TISSUE-TYPE PLASMINOGEN ACTIVATOR IN A HUMAN MELANOMA CELL LINE (BOWES)". W XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644397.
Pełny tekst źródłaDoty, Glenn N., David L. McCree i F. David Doty. "Projections of Levelized Cost Benefit of Grid-Scale Energy Storage Options". W ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90377.
Pełny tekst źródłaLagarde, Quentin, Serge Mazen, Bruno Beillard, Julien Leylavergne, Joel Andrieu, Jean-Pierre Cancès, Vahid Meghdadi, Michelle Lalande, Edson Martinod i Marie-Sandrine Denis. "Étude et conception de système de management pour batteries innovantes, Batterie Sodium (NA-ion)". W Les journées de l'interdisciplinarité 2022. Limoges: Université de Limoges, 2022. http://dx.doi.org/10.25965/lji.581.
Pełny tekst źródłaDonina, Kristina Y., i D. V. Cherkashin. "EFFECTS OF SODIUM DODECYL SULFATE ON BEETROOT CROP CELLS". W Science Present and Future: Research Landscape in the 21st century. Иркутск: Федеральное государственное бюджетное учреждение науки "Иркутский научный центр Сибирского отделения Российской академии наук", 2022. http://dx.doi.org/10.54696/isc_49741471.
Pełny tekst źródłaDucheyne, Paul, Hongxia Gao, Ahmed El-Ghannam, Irving Shapiro i Portonovo Ayyaswamy. "The Use of Bioactive Glass Particles As Microcarriers". W ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-1192.
Pełny tekst źródłaRaporty organizacyjne na temat "Sodium Ion Cells"
Shpigel, Muki, Allen Place, William Koven, Oded (Odi) Zmora, Sheenan Harpaz i Mordechai Harel. Development of Sodium Alginate Encapsulation of Diatom Concentrates as a Nutrient Delivery System to Enhance Growth and Survival of Post-Larvae Abalone. United States Department of Agriculture, wrzesień 2001. http://dx.doi.org/10.32747/2001.7586480.bard.
Pełny tekst źródłaLew, Chong Zhi, i Ting Chi Yeh. Pediatric Extracranial Germ Cell Tumor: Clinical Perspective of Autologous Hematopoietic Cell Transplantation. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, styczeń 2023. http://dx.doi.org/10.37766/inplasy2023.1.0081.
Pełny tekst źródłaMARUSICH RM. TOXICOLOGICAL AND STRUCTURAL CONSEQUENCES FROM SODIUM-WATER REACTION IN CELL CONTAINING THE SECONDARY SODIUM TANK. Office of Scientific and Technical Information (OSTI), czerwiec 2008. http://dx.doi.org/10.2172/934380.
Pełny tekst źródłaKrager, Kimberly J., i Frederick E. Domann. Genetically Targeted Radiotherapy Utilizing the Human Sodium Iodide Symporter in Human Breast Carcinoma Cells. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2005. http://dx.doi.org/10.21236/ada436156.
Pełny tekst źródłaKrager, Kimberly, i Frederick E. Domann. Genetically Targeted Radiotherapy Utilizing the Human Sodium Iodide Symporter in Human Breast Carcinoma Cells. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2006. http://dx.doi.org/10.21236/ada455269.
Pełny tekst źródłaGaffin, S. L., M. S. Koratich i R. W. Hubbard. The Effect of Hyperthermia on Intracellular Sodium Concentration in Isolated Human Cells. A Preliminary Report. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1996. http://dx.doi.org/10.21236/ada331123.
Pełny tekst źródłaValeri, C. R. Extension of Post-Than-Wash Storage of Glycerol-Frozen Red Blood Cells at 4 C In 0.9% Sodium Chloride-0.1% Glucose Solution. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1994. http://dx.doi.org/10.21236/ada360423.
Pełny tekst źródłaSchwartz, Bertha, Vaclav Vetvicka, Ofer Danai i Yitzhak Hadar. Increasing the value of mushrooms as functional foods: induction of alpha and beta glucan content via novel cultivation methods. United States Department of Agriculture, styczeń 2015. http://dx.doi.org/10.32747/2015.7600033.bard.
Pełny tekst źródłaLaw, J. D., K. N. Brewer, R. S. Herbst, T. A. Todd i L. G. Olson. Demonstration of an optimized TRUEX flowsheet for partitioning of actinides from actual ICPP sodium-bearing waste using centrifugal contactors in a shielded cell facility. Office of Scientific and Technical Information (OSTI), styczeń 1998. http://dx.doi.org/10.2172/573170.
Pełny tekst źródłaSadka, Avi, Mikeal L. Roose i Yair Erner. Molecular Genetic Analysis of Citric Acid Accumulation in Citrus Fruit. United States Department of Agriculture, marzec 2001. http://dx.doi.org/10.32747/2001.7573071.bard.
Pełny tekst źródła