Artykuły w czasopismach na temat „Sodium Air Battery”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Sodium Air Battery”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chawla, Neha, i Meer Safa. "Sodium Batteries: A Review on Sodium-Sulfur and Sodium-Air Batteries". Electronics 8, nr 10 (22.10.2019): 1201. http://dx.doi.org/10.3390/electronics8101201.
Pełny tekst źródłaBi, Xuanxuan, Rongyue Wang, Yifei Yuan, Dongzhou Zhang, Tao Zhang, Lu Ma, Tianpin Wu, Reza Shahbazian-Yassar, Khalil Amine i Jun Lu. "From Sodium–Oxygen to Sodium–Air Battery: Enabled by Sodium Peroxide Dihydrate". Nano Letters 20, nr 6 (19.05.2020): 4681–86. http://dx.doi.org/10.1021/acs.nanolett.0c01670.
Pełny tekst źródłaMcCormick, Colin. "Energy Focus: Rechargeable room-temperature sodium-air battery involves sodium superoxide". MRS Bulletin 38, nr 2 (luty 2013): 119. http://dx.doi.org/10.1557/mrs.2013.30.
Pełny tekst źródłaYang, Sheng, i Donald J. Siegel. "Intrinsic Conductivity in Sodium–Air Battery Discharge Phases: Sodium Superoxide vs Sodium Peroxide". Chemistry of Materials 27, nr 11 (20.05.2015): 3852–60. http://dx.doi.org/10.1021/acs.chemmater.5b00285.
Pełny tekst źródłaXu, Xiaolong, Kwan San Hui, Duc Anh Dinh, Kwun Nam Hui i Hao Wang. "Recent advances in hybrid sodium–air batteries". Materials Horizons 6, nr 7 (2019): 1306–35. http://dx.doi.org/10.1039/c8mh01375f.
Pełny tekst źródłaKondori, Alireza, Mohammadreza Esmaeilirad, Ahmad mosen Harzandi i Mohammad Asadi. "A Reachable Sodium-Oxygen Battery Based on Sodium Superoxide Chemistry". ECS Meeting Abstracts MA2022-02, nr 2 (9.10.2022): 132. http://dx.doi.org/10.1149/ma2022-022132mtgabs.
Pełny tekst źródłaAdelhelm, Philipp, Pascal Hartmann, Conrad L. Bender, Martin Busche, Christine Eufinger i Juergen Janek. "From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries". Beilstein Journal of Nanotechnology 6 (23.04.2015): 1016–55. http://dx.doi.org/10.3762/bjnano.6.105.
Pełny tekst źródłaRanmode, Vaibhav, i Jishnu Bhattacharya. "Macroscopic modelling of the discharge behaviour of sodium air flow battery". Journal of Energy Storage 25 (październik 2019): 100827. http://dx.doi.org/10.1016/j.est.2019.100827.
Pełny tekst źródłaSun, Qian, Hossein Yadegari, Mohammad N. Banis, Jian Liu, Biwei Xiao, Xia Li, Craig Langford, Ruying Li i Xueliang Sun. "Toward a Sodium–“Air” Battery: Revealing the Critical Role of Humidity". Journal of Physical Chemistry C 119, nr 24 (5.06.2015): 13433–41. http://dx.doi.org/10.1021/acs.jpcc.5b02673.
Pełny tekst źródłaLi, Yaqiong, Jingling Ma, Guangxin Wang, Fengzhang Ren, Yujie Zhu i Yongfa Song. "Investigation of Sodium Phosphate and Sodium Dodecylbenzenesulfonate as Electrolyte Additives for AZ91 Magnesium-Air Battery". Journal of The Electrochemical Society 165, nr 9 (2018): A1713—A1717. http://dx.doi.org/10.1149/2.0581809jes.
Pełny tekst źródłaBaek, Myung-Jin, Jieun Choi, Tae-Ung Wi, Hyeong Yong Lim, Min Hoon Myung, Chanoong Lim, Jinsu Sung i in. "Strong interfacial energetics between catalysts and current collectors in aqueous sodium–air batteries". Journal of Materials Chemistry A 10, nr 9 (2022): 4601–10. http://dx.doi.org/10.1039/d2ta00329e.
Pełny tekst źródłaSenthilkumar, Baskar, Ahamed Irshad i Prabeer Barpanda. "Cobalt and Nickel Phosphates as Multifunctional Air-Cathodes for Rechargeable Hybrid Sodium-Air Battery Applications". ACS Applied Materials & Interfaces 11, nr 37 (20.08.2019): 33811–18. http://dx.doi.org/10.1021/acsami.9b09090.
Pełny tekst źródłaWang, Lei, Chenglong Yang, Shuo Dou, Shuangyin Wang, Jintao Zhang, Xian Gao, Jianmin Ma i Yan Yu. "Nitrogen-doped hierarchically porous carbon networks: synthesis and applications in lithium-ion battery, sodium-ion battery and zinc-air battery". Electrochimica Acta 219 (listopad 2016): 592–603. http://dx.doi.org/10.1016/j.electacta.2016.10.050.
Pełny tekst źródłaYang, Qingyun, Yanjin Liu, Hong Ou, Xueyi Li, Xiaoming Lin, Akif Zeb i Lei Hu. "Fe-Based metal–organic frameworks as functional materials for battery applications". Inorganic Chemistry Frontiers 9, nr 5 (2022): 827–44. http://dx.doi.org/10.1039/d1qi01396c.
Pełny tekst źródłaJia, Shipeng, Jonathan Counsell, Michel Adamič, Antranik Jonderian i Eric McCalla. "High-throughput design of Na–Fe–Mn–O cathodes for Na-ion batteries". Journal of Materials Chemistry A 10, nr 1 (2022): 251–65. http://dx.doi.org/10.1039/d1ta07940a.
Pełny tekst źródłaPeled, E., D. Golodnitsky, H. Mazor, M. Goor i S. Avshalomov. "Parameter analysis of a practical lithium- and sodium-air electric vehicle battery". Journal of Power Sources 196, nr 16 (sierpień 2011): 6835–40. http://dx.doi.org/10.1016/j.jpowsour.2010.09.104.
Pełny tekst źródłaLiu, Wen, Qian Sun, Yin Yang, Jing-Ying Xie i Zheng-Wen Fu. "An enhanced electrochemical performance of a sodium–air battery with graphene nanosheets as air electrode catalysts". Chemical Communications 49, nr 19 (2013): 1951. http://dx.doi.org/10.1039/c3cc00085k.
Pełny tekst źródłaOh, Jin An Sam, Zhihan Zeng i Li Lu. "Thin Nasicon Sodium-Ions Solid State Electrolyte By Tape Casting Method". ECS Meeting Abstracts MA2022-01, nr 3 (7.07.2022): 499. http://dx.doi.org/10.1149/ma2022-013499mtgabs.
Pełny tekst źródłaVaghefinazari, Bahram, Darya Snihirova, Cheng Wang, Linqian Wang, Min Deng, Daniel Höche, Sviatlana Lamaka i Mikhail Zheludkevich. "Boosting Mg-Air Primary Battery Performance Via Addition of Complexing Agents in the Electrolyte: A Mechanistic View on the Effect of EDTA". ECS Meeting Abstracts MA2022-02, nr 1 (9.10.2022): 3. http://dx.doi.org/10.1149/ma2022-0213mtgabs.
Pełny tekst źródłaMa, Jingling, Guangxin Wang, Yaqiong Li, Wuhui Li i Fengzhang Ren. "Influence of Sodium Silicate/Sodium Alginate Additives on Discharge Performance of Mg–Air Battery Based on AZ61 Alloy". Journal of Materials Engineering and Performance 27, nr 5 (2.04.2018): 2247–54. http://dx.doi.org/10.1007/s11665-018-3327-5.
Pełny tekst źródłaSaini, Amit. "Investigation of the Performance of Different Battery Technologies for Electronic Devices". Mathematical Statistician and Engineering Applications 71, nr 2 (6.03.2022): 637–46. http://dx.doi.org/10.17762/msea.v71i2.2193.
Pełny tekst źródłaSenthilkumar, Baskar, Ziyauddin Khan, Sangmin Park, Inseok Seo, Hyunhyub Ko i Youngsik Kim. "Exploration of cobalt phosphate as a potential catalyst for rechargeable aqueous sodium-air battery". Journal of Power Sources 311 (kwiecień 2016): 29–34. http://dx.doi.org/10.1016/j.jpowsour.2016.02.022.
Pełny tekst źródłaZhou, Ya-Nan, Peng-Fei Wang, Xu-Dong Zhang, Lin-Bo Huang, Wen-Peng Wang, Ya-Xia Yin, Sailong Xu i Yu-Guo Guo. "Air-Stable and High-Voltage Layered P3-Type Cathode for Sodium-Ion Full Battery". ACS Applied Materials & Interfaces 11, nr 27 (11.06.2019): 24184–91. http://dx.doi.org/10.1021/acsami.9b07299.
Pełny tekst źródłaDiwakar, K., P. Rajkumar, R. Subadevi, P. Arjunan i M. Sivakumar. "A study on high rate and high stable sodium vanadium phosphate electrode for sodium battery alongside air exposure treatment". Journal of Materials Science: Materials in Electronics 32, nr 11 (18.05.2021): 14186–93. http://dx.doi.org/10.1007/s10854-021-05969-5.
Pełny tekst źródłaSalkuti, Surender Reddy. "Electrochemical batteries for smart grid applications". International Journal of Electrical and Computer Engineering (IJECE) 11, nr 3 (1.06.2021): 1849. http://dx.doi.org/10.11591/ijece.v11i3.pp1849-1856.
Pełny tekst źródłaZhao, He, Jianzhong Li, Weiping Liu, Haoyuan Xu, Xuanwen Gao, Junjie Shi, Kai Yu i Xueyong Ding. "Integrated titanium-substituted air stable O3 sodium layered oxide electrode via a complexant assisted route for high capacity sodium-ion battery". Electrochimica Acta 388 (sierpień 2021): 138561. http://dx.doi.org/10.1016/j.electacta.2021.138561.
Pełny tekst źródłaWu, Xiaohan, Hui Liu, Jiaxi Zhang, Juemin Song, Jiefeng Huang, Wanli Xu, Yang Yan i Kun Yu. "Synthesis of Ag-La0.8Sr0.2MnO3 (LSM-Ag) Composite Powder and Its Application in Magnesium Air Battery". Metals 11, nr 4 (13.04.2021): 633. http://dx.doi.org/10.3390/met11040633.
Pełny tekst źródłaZhu, Jianhui, Amr Abdelkader, Denisa Demko, Libo Deng, Peixin Zhang, Tingshu He, Yanyi Wang i Licong Huang. "Electrocatalytic Assisted Performance Enhancement for the Na-S Battery in Nitrogen-Doped Carbon Nanospheres Loaded with Fe". Molecules 25, nr 7 (30.03.2020): 1585. http://dx.doi.org/10.3390/molecules25071585.
Pełny tekst źródłaClaus, Ana, Alexandra Berkova, Osama Awadallah i Bilal El-Zahab. "Seawater Battery: Strategies to Enable High Performance". ECS Meeting Abstracts MA2022-02, nr 64 (9.10.2022): 2330. http://dx.doi.org/10.1149/ma2022-02642330mtgabs.
Pełny tekst źródłaKang, Yao, Shuo Wang, Siqi Zhu, Haixing Gao, Kwan San Hui, Cheng-Zong Yuan, Hong Yin i in. "Iron-modulated nickel cobalt phosphide embedded in carbon to boost power density of hybrid sodium–air battery". Applied Catalysis B: Environmental 285 (maj 2021): 119786. http://dx.doi.org/10.1016/j.apcatb.2020.119786.
Pełny tekst źródłaDeng, Jianqiu, Wen-Bin Luo, Xiao Lu, Qingrong Yao, Zhongmin Wang, Hua-Kun Liu, Huaiying Zhou i Shi-Xue Dou. "High Energy Density Sodium-Ion Battery with Industrially Feasible and Air-Stable O3-Type Layered Oxide Cathode". Advanced Energy Materials 8, nr 5 (9.10.2017): 1701610. http://dx.doi.org/10.1002/aenm.201701610.
Pełny tekst źródłaNagy, Tibor, Lajos Nagy, Zoltán Erdélyi, Eszter Baradács, György Deák, Miklós Zsuga i Sándor Kéki. "“In Situ” Formation of Zn Anode from Bimetallic Cu-Zn Alloy (Brass) for Dendrite-Free Operation of Zn-Air Rechargeable Battery". Batteries 8, nr 11 (3.11.2022): 212. http://dx.doi.org/10.3390/batteries8110212.
Pełny tekst źródłaRahayu, Theresia Evila Purwanti Sri, Mohammad Nurhilal i Rosita Dwityaningsih. "Analisis Proksimat dan Bilangan Yodium Sebagai Kajian Awal Aarang Tempurung Nipah Sebagai Bahan Intermediate Karbon Keras". Jurnal Rekayasa Hijau 6, nr 3 (16.01.2023): 248–60. http://dx.doi.org/10.26760/jrh.v6i3.248-260.
Pełny tekst źródłaLv, Chaonan, Qi Zhang, Yuxin Zhang, Zefang Yang, Pengfei Wu, Dan Huang, Huanhuan Li, Haiyan Wang i Yougen Tang. "Synergistic regulating the aluminum corrosion by ellagic acid and sodium stannate hybrid additives for advanced aluminum-air battery". Electrochimica Acta 417 (czerwiec 2022): 140311. http://dx.doi.org/10.1016/j.electacta.2022.140311.
Pełny tekst źródłaLiu, B. H., Z. P. Li i L. L. Chen. "Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH4-air battery". Journal of Power Sources 180, nr 1 (maj 2008): 530–34. http://dx.doi.org/10.1016/j.jpowsour.2008.02.058.
Pełny tekst źródłaMostert, Clemens, Berit Ostrander, Stefan Bringezu i Tanja Kneiske. "Comparing Electrical Energy Storage Technologies Regarding Their Material and Carbon Footprint". Energies 11, nr 12 (3.12.2018): 3386. http://dx.doi.org/10.3390/en11123386.
Pełny tekst źródłaMongird, Kendall, Vilayanur Viswanathan, Patrick Balducci, Jan Alam, Vanshika Fotedar, Vladimir Koritarov i Boualem Hadjerioua. "An Evaluation of Energy Storage Cost and Performance Characteristics". Energies 13, nr 13 (28.06.2020): 3307. http://dx.doi.org/10.3390/en13133307.
Pełny tekst źródłaDeng, Jianqiu, Wen-Bin Luo, Xiao Lu, Qingrong Yao, Zhongmin Wang, Hua-Kun Liu, Huaiying Zhou i Shi-Xue Dou. "Sodium-Ion Batteries: High Energy Density Sodium-Ion Battery with Industrially Feasible and Air-Stable O3-Type Layered Oxide Cathode (Adv. Energy Mater. 5/2018)". Advanced Energy Materials 8, nr 5 (luty 2018): 1870019. http://dx.doi.org/10.1002/aenm.201870019.
Pełny tekst źródłaAstuti, Fahmi, Bobby Refokry Oeza, Eka Septi Rahmawati i Darminto Darminto. "NaFePO<sub>4</sub> Particles as a Cathode of Sodium Ion-Battery via Sol-Gel Method: A Review on Synthesis". Key Engineering Materials 950 (31.07.2023): 17–24. http://dx.doi.org/10.4028/p-as34nm.
Pełny tekst źródłaXiao, Yao, Tao Wang, Yan-Fang Zhu, Hai-Yan Hu, Shuang-Jie Tan, Shi Li, Peng-Fei Wang i in. "Large-Scale Synthesis of the Stable Co-Free Layered Oxide Cathode by the Synergetic Contribution of Multielement Chemical Substitution for Practical Sodium-Ion Battery". Research 2020 (19.10.2020): 1–16. http://dx.doi.org/10.34133/2020/1469301.
Pełny tekst źródłaXie, Geng, Fuwei Wen, Qichao Wu, Xiang You, Geng Xie i Lingzi Sang. "In-Situ Characterization of Molecular Processes at the Anode/Na3SbS4 Electrolyte Interface in All-Solid-State Sodium Batteries". ECS Meeting Abstracts MA2022-01, nr 4 (7.07.2022): 541. http://dx.doi.org/10.1149/ma2022-014541mtgabs.
Pełny tekst źródłaSalvini, Coriolano, i Ambra Giovannelli. "Techno-Economic Comparison of Utility-Scale Compressed Air and Electro-Chemical Storage Systems". Energies 15, nr 18 (11.09.2022): 6644. http://dx.doi.org/10.3390/en15186644.
Pełny tekst źródłaSu, Fengmei, Xuechao Qiu, Feng Liang, Manabu Tanaka, Tao Qu, Yaochun Yao, Wenhui Ma i in. "Preparation of Nickel Nanoparticles by Direct Current Arc Discharge Method and Their Catalytic Application in Hybrid Na-Air Battery". Nanomaterials 8, nr 9 (1.09.2018): 684. http://dx.doi.org/10.3390/nano8090684.
Pełny tekst źródłaGao, Haixing, Siqi Zhu, Yao Kang, Duc Anh Dinh, Kwan San Hui, Feng Bin, Xi Fan i in. "Zeolitic Imidazolate Framework-Derived Co-Fe@NC for Rechargeable Hybrid Sodium–Air Battery with a Low Voltage Gap and Long Cycle Life". ACS Applied Energy Materials 5, nr 2 (2.02.2022): 1662–71. http://dx.doi.org/10.1021/acsaem.1c03073.
Pełny tekst źródłaWang, Lei, Jianxing Hu, Yajuan Yu, Kai Huang i Yuchen Hu. "Lithium-air, lithium-sulfur, and sodium-ion, which secondary battery category is more environmentally friendly and promising based on footprint family indicators?" Journal of Cleaner Production 276 (grudzień 2020): 124244. http://dx.doi.org/10.1016/j.jclepro.2020.124244.
Pełny tekst źródłaHadi, Abdul, Iskandar Idris Yaacob i Cheah Seok Gaik. "Synthesis of Nanocrystalline CeO2 Using Mechanochemical Method: The Effect of Milling Time on the Particle Size". Materials Science Forum 517 (czerwiec 2006): 105–10. http://dx.doi.org/10.4028/www.scientific.net/msf.517.105.
Pełny tekst źródłaSengupta, Abhinanda, Ajit Kumar, Aakash Ahuja, Gayatree Barik, Harshita Lohani, Pratima Kumari i Sagar Mitra. "Nano-Crystallites of P2-Type Layered Transition Metal Oxide High Voltage Cathode for Sodium-Ion Battery". ECS Meeting Abstracts MA2022-02, nr 64 (9.10.2022): 2332. http://dx.doi.org/10.1149/ma2022-02642332mtgabs.
Pełny tekst źródłaDemchenko, V. G., A. S. Trubachev, V. J. Falko i S. S. Hron. "MOBILE ACCUMULATORS FOR DISCRETE SYSTEMS HEAT-COLD SUPPLIES. Part 2." Industrial Heat Engineering 40, nr 3 (7.09.2018): 57–69. http://dx.doi.org/10.31472/ihe.3.2018.08.
Pełny tekst źródłaMa, Cheng, Yuehong Shu i Hongyu Chen. "Leaching of Spent Lead Paste by Oxalate and Sodium Oxalate Solution and Prepared Leady Oxide Powder in Nitrogen and Air for Lead Acid Battery". Journal of The Electrochemical Society 163, nr 10 (2016): A2240—A2247. http://dx.doi.org/10.1149/2.0501610jes.
Pełny tekst źródłaChen, Ting-Ru, Tian Sheng, Zhen-Guo Wu, Jun-Tao Li, En-Hui Wang, Chun-Jin Wu, Hong-Tai Li i in. "Cu2+ Dual-Doped Layer-Tunnel Hybrid Na0.6Mn1–xCuxO2 as a Cathode of Sodium-Ion Battery with Enhanced Structure Stability, Electrochemical Property, and Air Stability". ACS Applied Materials & Interfaces 10, nr 12 (5.03.2018): 10147–56. http://dx.doi.org/10.1021/acsami.8b00614.
Pełny tekst źródła