Gotowa bibliografia na temat „Smoothing problems”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Smoothing problems”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Smoothing problems"
Cipra, Tomáš. "Some problems of exponential smoothing". Applications of Mathematics 34, nr 2 (1989): 161–69. http://dx.doi.org/10.21136/am.1989.104344.
Pełny tekst źródłaAsmuss, Svetlana, i Natalja Budkina. "ON SOME GENERALIZATION OF SMOOTHING PROBLEMS". Mathematical Modelling and Analysis 20, nr 3 (2.06.2015): 311–28. http://dx.doi.org/10.3846/13926292.2015.1048756.
Pełny tekst źródłaYin, Hongxia. "An Adaptive Smoothing Method for Continuous Minimax Problems". Asia-Pacific Journal of Operational Research 32, nr 01 (luty 2015): 1540001. http://dx.doi.org/10.1142/s0217595915400011.
Pełny tekst źródłaAsmuss, Svetlana, i Natalia Budkina. "ON SMOOTHING PROBLEMS WITH ONE ADDITIONAL EQUALITY CONDITION". Mathematical Modelling and Analysis 14, nr 2 (30.06.2009): 159–68. http://dx.doi.org/10.3846/1392-6292.2009.14.159-168.
Pełny tekst źródłaZhou, Zhengyong, i Qi Yang. "An Active Set Smoothing Method for Solving Unconstrained Minimax Problems". Mathematical Problems in Engineering 2020 (24.06.2020): 1–25. http://dx.doi.org/10.1155/2020/9108150.
Pełny tekst źródłaYang, X. Q. "Smoothing approximations to nonsmooth optimization problems". Journal of the Australian Mathematical Society. Series B. Applied Mathematics 36, nr 3 (styczeń 1995): 274–85. http://dx.doi.org/10.1017/s0334270000010444.
Pełny tekst źródłaTsar'kov, I. G. "Linear methods in some smoothing problems". Mathematical Notes 56, nr 6 (grudzień 1994): 1255–70. http://dx.doi.org/10.1007/bf02266694.
Pełny tekst źródłaHaddou, Mounir, i Patrick Maheux. "Smoothing Methods for Nonlinear Complementarity Problems". Journal of Optimization Theory and Applications 160, nr 3 (12.09.2013): 711–29. http://dx.doi.org/10.1007/s10957-013-0398-1.
Pełny tekst źródłaZhu, Jianguang, i Binbin Hao. "A new smoothing method for solving nonlinear complementarity problems". Open Mathematics 17, nr 1 (10.03.2019): 104–19. http://dx.doi.org/10.1515/math-2019-0011.
Pełny tekst źródłaWang, Jian, LingLing Shen, LeSheng Jin i Gang Qian. "Age Sequence Recursive Models for Long Time Evaluation Problems". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 26, nr 02 (kwiecień 2018): 299–325. http://dx.doi.org/10.1142/s0218488518500162.
Pełny tekst źródłaRozprawy doktorskie na temat "Smoothing problems"
Eichmann, Katrin. "Smoothing stochastic bang-bang problems". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://dx.doi.org/10.18452/16799.
Pełny tekst źródłaMotivated by the problem of how to optimally execute a large stock position, this thesis considers a stochastic control problem with two special properties. First, the control problem has an exponential delay in the control variable, and so the present value of the state process depends on the moving average of past control decisions. Second, the coefficients are assumed to be linear in the control variable. It is shown that a control problem with these properties generates a mathematically challenging problem. Specifically, it becomes a stochastic control problem whose solution (if one exists) has a bang-bang nature. The resulting discontinuity of the optimal solution creates difficulties in proving the existence of an optimal solution and in solving the problem with numerical methods. A sequence of stochastic control problems with state processes is constructed, whose diffusion matrices are invertible and approximate the original degenerate diffusion matrix. The cost functionals of the sequence of control problems are convex approximations of the original linear cost functional. To prove the convergence of the solutions, the control problems are written in the form of forward-backward stochastic differential equations (FBSDEs). It is then shown that the solutions of the FBSDEs corresponding to the constructed sequence of control problems converge in law, at least along a subsequence. By assuming convexity of the coefficients, it is then possible to construct from this limit an admissible control process which, for an appropriate reference stochastic system, is optimal for our original stochastic control problem. In addition to proving the existence of an optimal (bang-bang) solution, we obtain a smooth approximation of the discontinuous optimal bang-bang solution, which can be used for the numerical solution of the problem. These results are then applied to the optimal execution problem in form of numerical simulations.
Herrick, David Richard Mark. "Wavelet methods for curve and surface estimation". Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310601.
Pełny tekst źródłaXu, Song. "Non-interior path-following methods for complementarity problems /". Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/5793.
Pełny tekst źródłaLowe, Matthew. "Extended and Unscented Kalman Smoothing for Re-linearization of Nonlinear Problems with Applications". Digital WPI, 2015. https://digitalcommons.wpi.edu/etd-dissertations/457.
Pełny tekst źródłaEichmann, Katrin [Verfasser], Peter [Akademischer Betreuer] Imkeller, Ying [Akademischer Betreuer] Hu i Michael [Akademischer Betreuer] Kupper. "Smoothing stochastic bang-bang problems : with application to the optimal execution problem / Katrin Eichmann. Gutachter: Peter Imkeller ; Ying Hu ; Michael Kupper". Berlin : Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://d-nb.info/1041284543/34.
Pełny tekst źródłaKlann, Esther. "Regularization of linear ill-posed problems in two steps : combination of data smoothing and reconstruction methods". kostenfrei, 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=979913039.
Pełny tekst źródłaPadoan, Simone. "Computational methods for complex problems in extreme value theory". Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3427194.
Pełny tekst źródłaRau, Christian, i rau@maths anu edu au. "Curve Estimation and Signal Discrimination in Spatial Problems". The Australian National University. School of Mathematical Sciences, 2003. http://thesis.anu.edu.au./public/adt-ANU20031215.163519.
Pełny tekst źródłaYilmaz, Asim Egemen. "Finite Element Modeling Of Electromagnetic Scattering Problems Via Hexahedral Edge Elements". Phd thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608587/index.pdf.
Pełny tekst źródłaAudiard, Corentin. "Problèmes aux limites dispersifs linéaires non homogènes, application au système d’Euler-Korteweg". Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10261/document.
Pełny tekst źródłaThe main aim of this thesis is to obtain well-posedness results for boundary value problems especially with non-homogeneous boundary conditions. The approach that we chose here is to adapt technics from the classical theory of hyperbolic boundary value problems (for which we give a brief survey in the first chapter, and a slight generalization). In chapter 3 we delimitate a class of linear dispersive equations, and we obtain well-posedness results for corresponding boundary value problems in chapter 4.The leading thread of this memoir is the Euler-Korteweg model. The boundary value problem for a linearized version is investigated in chapter 2, and the Kato-smoothing effect is proved (also for the linearized model) in chapter 3. Finally, the numerical analysis of the model is made in chapter 5. To begin with, we use the previous abstract results to show a simple way of deriving the so-called transparent boundary conditions for the equations outlined in chapter 3, and those conditions are then used to numerically solve the semi-linear Euler-Korteweg model. This allow us to observe the stability and instability of solitons, as well as a finite time blow up
Książki na temat "Smoothing problems"
Semenovich, Zavʹi͡a︡lov I͡U︡riĭ, Pavlov N. N i Miroshnichenko V. L, red. Ėkstremalʹnye svoĭstva splaĭnov i zadacha sglazhivanii͡a︡. Novosibirsk: Izd-vo "Nauka," Sibirskoe otd-nie, 1988.
Znajdź pełny tekst źródłaHulett, Victoria L. Smoothies for kidney health: A delicious approach to the prevention and management of kidney problems & so much more. Garden City Park, NY: Square One Publishers, 2015.
Znajdź pełny tekst źródłaUlbrich, Michael, Liqun Qi i Defeng Sun. Semismooth and Smoothing Newton Methods. Springer, 2021.
Znajdź pełny tekst źródłaFerraty, Frédéric, i Philippe Vieu. Kernel Regression Estimation for Functional Data. Redaktorzy Frédéric Ferraty i Yves Romain. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.013.4.
Pełny tekst źródłaDelsol, Laurent. Nonparametric Methods for α-Mixing Functional Random Variables. Redaktorzy Frédéric Ferraty i Yves Romain. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.013.5.
Pełny tekst źródłaKaraman, Sadi. Fixed point smoothing algorithm to the torpedo tracking problem. 1986.
Znajdź pełny tekst źródłaMabray, Beaulah. Weight Problems: How to Prepare a Perfect, Delicious Green Smoothie. Independently Published, 2022.
Znajdź pełny tekst źródłaGravina, Francis. Green Smoothie Recipes for You : Get Rid of Your Indigestion Problems, Sleeping Issues: Vegan Meal Plan. Independently Published, 2021.
Znajdź pełny tekst źródłaButz, Martin V., i Esther F. Kutter. Primary Visual Perception from the Bottom Up. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780198739692.003.0008.
Pełny tekst źródłaQuickBooks® Pro Support+1(866∎751∎2963)Phone Number. mrinalt, 2022.
Znajdź pełny tekst źródłaCzęści książek na temat "Smoothing problems"
Nason, Guy P., i Bernard W. Silverman. "Wavelets for Regression and Other Statistical Problems". W Smoothing and Regression, 159–91. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118150658.ch7.
Pełny tekst źródłaGander, W., i Urs von Matt. "Smoothing Filters". W Solving Problems in Scientific Computing Using Maple and MATLAB®, 133–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18873-2_9.
Pełny tekst źródłaGander, W., i U. von Matt. "Smoothing Filters". W Solving Problems in Scientific Computing Using Maple and Matlab ®, 121–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-97533-2_9.
Pełny tekst źródłaGander, W., i U. von Matt. "Smoothing Filters". W Solving Problems in Scientific Computing Using Maple and MATLAB®, 121–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-97619-3_9.
Pełny tekst źródłaGander, W., i U. von Matt. "Smoothing Filters". W Solving Problems in Scientific Computing Using Maple and MATLAB®, 135–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-97953-8_9.
Pełny tekst źródłaBagirov, A. M., N. Sultanova, A. Al Nuaimat i S. Taheri. "Solving Minimax Problems: Local Smoothing Versus Global Smoothing". W Numerical Analysis and Optimization, 23–43. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90026-1_2.
Pełny tekst źródłaEnander, Rickard. "Improved Residual Smoothing". W Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects, 192–98. Wiesbaden: Vieweg+Teubner Verlag, 1993. http://dx.doi.org/10.1007/978-3-322-87871-7_23.
Pełny tekst źródłaBerry, Scott M., Raymond J. Carroll i David Ruppert. "Bayesian Smoothing for Measurement Error Problems". W Total Least Squares and Errors-in-Variables Modeling, 121–30. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-3552-0_11.
Pełny tekst źródłaRinott, Yosef, i Natalie Shlomo. "A smoothing model for sample disclosure risk estimation". W Complex Datasets and Inverse Problems, 161–71. Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2007. http://dx.doi.org/10.1214/074921707000000120.
Pełny tekst źródłaChen, Xiaojun, Nami Matsunaga i Tetsuro Yamamoto. "Smoothing Newton Methods for Nonsmooth Dirichlet Problems". W Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, 65–79. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-6388-1_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Smoothing problems"
LAMM, PATRICIA K. "VARIABLE SMOOTHING REGULARIZATION METHODS FOR INVERSE PROBLEMS". W Proceedings of the 6th IEEE Mediterranean Conference. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814447317_0055.
Pełny tekst źródła"Alternative smoothing algorithms for on-line estimation problems". W 29th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-194.
Pełny tekst źródłaLukasik, Michal, Himanshu Jain, Aditya Menon, Seungyeon Kim, Srinadh Bhojanapalli, Felix Yu i Sanjiv Kumar. "Semantic Label Smoothing for Sequence to Sequence Problems". W Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2020. http://dx.doi.org/10.18653/v1/2020.emnlp-main.405.
Pełny tekst źródłaGrimble, M. J. "H/sub infinity / inferential filtering, prediction and smoothing problems". W Proceedings of ICASSP '93. IEEE, 1993. http://dx.doi.org/10.1109/icassp.1993.319535.
Pełny tekst źródłaWu, Congwei, Jiping Cao i Yahong Zhu. "A Smoothing Multidimensional Filter Method for Nonlinear Complementarity Problems". W 2016 International Conference on Computer Science and Electronic Technology. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/cset-16.2016.10.
Pełny tekst źródłaZhang, Meng, Jianhua Tao, Huibin Jia i Xia Wang. "Improving HMM Based Speech Synthesis by Reducing Over-Smoothing Problems". W 2008 6th International Symposium on Chinese Spoken Language Processing (ISCSLP). IEEE, 2008. http://dx.doi.org/10.1109/chinsl.2008.ecp.16.
Pełny tekst źródłaGoldman, Paul, i Agnes Muszynska. "Smoothing Technique for Rub or Looseness-Related Rotor Dynamic Problems". W ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0297.
Pełny tekst źródłaYousefian, Farzad, Angelia Nedic i Uday V. Shanbhag. "Optimal robust smoothing extragradient algorithms for stochastic variational inequality problems". W 2014 IEEE 53rd Annual Conference on Decision and Control (CDC). IEEE, 2014. http://dx.doi.org/10.1109/cdc.2014.7040302.
Pełny tekst źródłaTsvil, Mariya, Ella Guleva i Margarita Zubkova. "ECONOMETRIC ANALYSIS OF THE VOLUME OF MUTUAL TRADE OF THE EAEU MEMBER STATES". W Economy of Russia: problems, trends, forecasts. au: AUS PUBLISHERS, 2021. http://dx.doi.org/10.26526/conferencearticle_61cc296bccac42.37597958.
Pełny tekst źródłaXavier, Vinicius, L., Felipe, M. G. França, Adilson, E. Xavier i Priscila, M. V. Lima. "Fermat-weber location problem solving by the hyperbolic smoothing approach". W International Workshop of "Stochastic Programming for Implementation and Advanced Applications". The Association of Lithuanian Serials, 2012. http://dx.doi.org/10.5200/stoprog.2012.26.
Pełny tekst źródłaRaporty organizacyjne na temat "Smoothing problems"
Pee, E. Y., i J. O. Royset. On Solving Large-Scale Finite Minimax Problems using Exponential Smoothing. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2010. http://dx.doi.org/10.21236/ada518716.
Pełny tekst źródłaElliott, Robert J. The Existence of Smooth Densities for the Prediction Filtering and Smoothing Problems. Fort Belvoir, VA: Defense Technical Information Center, listopad 1987. http://dx.doi.org/10.21236/ada189865.
Pełny tekst źródłaRoyset, J. O., i E. Y. Pee. Rate of Convergence Analysis of Discretization and Smoothing Algorithms for Semi-Infinite Minimax Problems. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2011. http://dx.doi.org/10.21236/ada551990.
Pełny tekst źródłaAndrian, Leandro Gaston, Oscar Valencia, Jorge Hirs i Ivan Leonardo Urrea Rios. Fiscal Rules and Economic Cycles: Quality (Always) Matters. Inter-American Development Bank, styczeń 2023. http://dx.doi.org/10.18235/0004570.
Pełny tekst źródłaBabuska, Ivo M., i Rodolfo Rodriguez. The Problem of the Selection of an A-Posteriori Error Indicator Based on Smoothening Techniques. Fort Belvoir, VA: Defense Technical Information Center, sierpień 1991. http://dx.doi.org/10.21236/ada253401.
Pełny tekst źródła